BIOSYNTHESIS OF SILVER NANOPARTICLES BYLEAFEXTRACT OF EUCALIYPTUS CINEREA AND EVALUATION OF ITS ANTIMICROBIAL ACTIVITY

  • Yosmery del Valle Vitta Professor
  • YENDRY MARTÍNEZ
  • MARÍA ISABEL CALDERON
Keywords: Silver Nanoparticles, Biosynthesis, Antimicrobial Activity, Eucalyptus Cinerea leaf extract, Pathogenic Microorganisms

Abstract

In this work, biosynthesized silver nanoparticles, AgNP, wereobtainedusing aqueousleaf extract of theEucalyptus cinerea (Ec). The optimal ratio for silver nanoparticle biosynthesis, was the combination of 10 mL of the extract with 20 mL of a 5 mM AgNO3 solution. An analysis by Fourier transform IR spectroscopy of the AgNP was carried out in order to examine the possible reducing groups of the silver ion. The size of AgNP was studied usingdynamic light scattering spectroscopy. The data analysis by Dynamic Light Scattering, DLS, revealedthat the particle size distribution of AgNp in solutionwere between 10 and 60 nm and its average size 14 nm. The AFM image revealed that AgNp were spherical covered by extract matrix and size average of 90nm. The biosynthesis of silver nanoparticle was monitored continuously by UV-VIS spectrophotometric analysis. In thevisible spectrum of AgNP dissolution,was observethe appearance of absorption peak at ∼450nm, as a result of its surface Plasmon resonance. The antimicrobial activity of AgNP was evaluated against Bacillus cereus and Salmonella thiphymurium by the agar diffusion method. Antibacterial activity was obtained against B. cereus and S. thiphymurium; the activity varied according to the concentration, showing the appearance of inhibition halos at 100% concentration of AgNP in both microorganisms.

Downloads

Download data is not yet available.

Author Biographies

YENDRY MARTÍNEZ

Universidad Central de Venezuela, Facultad de Ciencias, Escuela de Química, Laboratorio de Espectroscopia Láser. Paseo Los Ilustres, Urb. Valle Abajo. Código Postal 1040. Caracas-Venezuela. Tel.: +58-212-6051288.

MARÍA ISABEL CALDERON

Universidad Central de Venezuela, Facultad de Farmacia, Laboratorio de Microbiología de AlimentosAv. Los Ilustres, Ciudad Universitaria, Edif. Facultad de Farmacia, Los Chaguaramos, Caracas Venezuela. Código Postal: 1051.

References

Abd El-Rahman A.F. (2013). Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. Journal Of Applied Sciences Research, 6437-64.
Agnihotri S, M. S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 Nm using the same protocol and their antibacterial efficacy. RSC Adv., 3974–83.
Ahmed, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications. Journal of Advanced Research (7), 17-28.
Ali, K. (2015). Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacteria and Antibiofilm Activity on Clinical Isolates. Plos One, 1-20.
Amro N. (2000). High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir., 2789–96.
Arokiyaraj S., (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum and its antibacterial and cytotoxic effects: an in vitro study. Int J Nanomedicine, 379-388.
Ayepola O. (2008). The Antibacterial Activity of Leaf Extracts of Eucalyptus camaldulensis (Myrtaceae). Journal of Applied Sciences Research, 4(11), 1410-1413.
Banala, R. (2015). Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences, 22, 637-644.
Benakashani F. A. (2016). Biosynthesis of silver nanoparticles using Capparis spinosa leaf extract and their antibacterial activity. Karbala International Journal of Modern Science 2, 251-258.
Berton V. (2014). Study of the Interaction between Silver Nanoparticles and Salmonella as. Journal of Probiotics & Health , 1-5.
Brongersma Mark, K. P. (2007). Surface Plasmon Nanophotonics.Springer.
Danilczuk M. (2006). Conduction electron spin resonance of small silver particles. Spectro Acta Part A., 189-91.
Das V. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. Biotech., 121–26.
Dibrov P, D. J. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother, 2668-70
Disease, C. (2004). https://www.cdc.gov/ncidod/id_links.htm. Obtenido de Emerging and Re-emerging Infectious Diseases.
Erjaee H., (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology.
Escárcega-González C. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International Journal of Nanomedicine, 2349-2363.
Fabrega J. (2009). Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol, 7285–90.
Flores,C. (2014). Trabajo de Tesis Doctoral Nanopartículas de plata con potenciales aplicaciones en materiales implantables: síntesis, caracterización fisicoquímica y actividad bactericida. Buenos Aires, Argentina: Universidad Nacional De La Plata.
Gao, G. (2004). Nanostructures and nanomaterials. Synthesis, Properties and Applications. London : Imperial College Press.
Ghahfarokhi1, S. A. (2014). Antibacterial effect of silver nanoparticles on bacillus cereus. International Journal Of Basic- Biosciences, 6-11.
González, C. E. (2017). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International Journal of Nanomedicine , 2349-2363.
Hajipour, M. F. (2012). Antibacterial properties of nanoparticle.Trends Biotechnol.(10):499-511.
Hamouda T. (2000). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fung. Microbiol Res, 1-7.
Hengge-Aronis, R. (1996). Regulation of gene expression during entry into stationary phase, Escherichia coli and Salmonella: cellular and molecular biology. Washington: 2nd ed. ASM ,Press.
Huffman, C. F. (2007). Absorption and Scattering by a Sphere. En C. F. Huffman, Absorption and Scattering of Light by Small Particles (págs. 286-324). WILEY‐VCH.
Karou D, S. A. (2005). Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol , 1452-7.
Kawata K, O. M. (2009). In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells. Environ. Sci. Technol, 6046–6051.
Kerker, M. (1982). Lorenz–Mie Scattering by Spheres: Some Newly Recognized Phenomena. Aerosol Sciencie and Tecnology , 275-291.
Kim J., (2007). Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med, 95–101.
Kokila T. (2016). Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf., 467-473.
Kotakadi, V. (2015). New generation of bactericidal silver nanoparticles against different antibiotic resistant Escherichia coli strains. Appl Nanosci, 847–855.
Laban G. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicol, 185-195.
Le A. (2010). Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr Appl Phys., 910–6.
Lok C. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res., 5(4), 916-24.
Marambio-Jones, C. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 1531-1551.
Mie, G. (1908). "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen". Annalen der Physik, 377-445.
Mohamed S. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 356-363.
Mohammed A. (2015). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extrac.. Asian Pacific Journal of Tropical Biomedicine, 382-386.
Mohanta, Y. K. (2017). Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa. Frontiers in Molecular Biosciences.
Morones J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 2346–53.
Pazos-Ortiz, E. (2017). Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria. Journal of Nanomaterials.
Rai M, Y. A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 76-78.
Rajawat S. (2012). Comparative Study on Bactericidal Effect of Silver Nanoparticles, Synthesized Using Green Technology, in Combination with Antibiotics on Salmonella typhi. Journal of Biomaterials and Nanobiotechnology, 480-485.
Rajoriya, P. (2017). Green Synthesis of Silver Nanoparticles. Biotech Today, 7(1), 7-20.
Ramanibai R., V. K. (2016). Larvicidal activity of synthesized silver nanoparticles using isoamyl acetate identified in Annona squamosa leaves against Aedes aegypti and Culex quinquefasciatus. The Journal of Basic & Applied Zoology, 16-22.
Reddy MC, M. K. (2015). Phytosynthesis of eco-friendly silver nanoparticles and biological applications A novel concept of nanobiotehcnology. African Journal of Biotechnology, 14(3), 222-247.
Salahuddin Siddiqi K., (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology -1-28.
Schröfel, A. (2014). Applications of biosynthesized metallic nanoparticles A review. Acta Biomaterialia, 4023–4042.
Sebei, K. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research, 1-5.
Seong M, L. D. (2017). Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Curr Microbiol, 661-670.
Shirmohammadi E., (2014). Antibacterial Effects of Silver Nanoparticles Produced by Satureja hortensis Extract on Isolated Bacillus cereus from Soil of Sistan Plain. Int J Infect. .
Siddiq, K. S. ((2018)). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 1-28.
Sila, J. (2014). Green synthesis of silver nanoparticles using eucalyptus corymbia leaves extract and antimicrobial applications. International Journal of BioChemiPhysics, 21-30.
Sondi I. (2004). Silver nanoparticles as antimicrobial agents a case study on E. coli as a model for Gram-negative bacteria, J. J. Colloid Interface Sci., 175-182.
Stoyanova D., I. I. (2016). Nanobiotechnology against Salmonella spp. Journal of Veterinary Medicine and Research.
Taglietti, A. D. (2012). Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Langmuir, 8140-8148.
Velayutham, K. R. (2013). Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine, 95-101.
Xiu Z, Z. Q. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12, 4271–4275.
Published
2019-02-28
How to Cite
Vitta, Y., MARTÍNEZ, Y., & CALDERON, M. I. (2019). BIOSYNTHESIS OF SILVER NANOPARTICLES BYLEAFEXTRACT OF EUCALIYPTUS CINEREA AND EVALUATION OF ITS ANTIMICROBIAL ACTIVITY. GPH-International Journal of Applied Science, 2(02), 01-15. Retrieved from http://gphjournal.org/index.php/as/article/view/175