Influence of agricultural residues on some physical parameters of the soil fertility under eggplant cultivation

  • TOURE Ambéyin Université Jean Lorougnon Guédé, UFR Agroforesterie.
  • SORO Dogniméton Université Jean Lorougnon Guédé, UFR Agroforesterie
  • KOUADIO Konan-Kan Hyppolite Université Félix Houphouet-Boigny, UFR Sciences de la Terre et des Ressources Minières
  • BAKAYOKO Sidiky Université Jean Lorougnon Guédé, UFR Agroforesterie
  • KONE Tidiani Université Jean Lorougnon Guédé, UFR environnement
Keywords: Agricultural residues, flower, chicken droppings, permeability, humidity

Abstract

The loss of physical soil fertility reduces the mineral potential of soils each year with loss of agricultural yields in West Africa. As a solution, soil amendment based on animal waste is often considered while agricultural residues are regularly destroyed or subjected to animals. In addition, agro-industries and sawmills dump large quantities of waste into the environment of cities. The present study aimed to evaluate the effects of carbonized rice husk and sawdust on some physical parameters of a soil in eggplant production. The effect of fourteen (14) treatments based on carbonized rice husk and sawdust, with or without addition of chicken droppings, was tested under eggplant culture in the presence of two controls, with and without the addition of droppings. Particle size, permeability and humidity were determined after each crop cycle. In addition, the evolution of organic matter was evaluated in parallel. The results showed a textural improvement of the soil in relation to the variation of permeability and humidity at saturation and field capacity under the effect of agricultural substrates. The combination of rice husk, sawdust and chicken droppings allowed better soil moisture control. The 67% sawdust-33% rice husk composite with basic manure of 3 t.ha-1 of chicken droppings stood out from the others. In a context of climate change where rains are scarce, the data indicate that carbonized rice husks, carbonized sawdust and chicken droppings are residues to be valued in the conservation management of organic matter and agricultural soilwater.

Downloads

Download data is not yet available.

References

[1] Prasannakumar V, Vijith H, Abinod S, Geetha N. 2011. Estimation of soil erosion risk with in a small mountainoussub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience frontiers 3(2) 209-215.
[2] Ciampalini R, Billi P, Ferrari G, Borselli L, Follain S. 2011. Soil erosion induced by land use changes as determined by plough marks and field evidence in the Aksum area (Ethiopia). Agriculture, Ecosystems and Environment 146 (2012) 197– 208.
[3] Terranova O, Antronico L, Coscarelli R, Iaquinta P. 2009. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Research Institute for Geo-Hydrologic Protection, 112, 228–245.
[4] Soro D, Ayolié K, Zro FGB, Yao FYHK. 2015. Impact of organic fertilization on maize (Zea mays L.) production in a ferralitic soil of centre-west Côte d’Ivoire. Journal of Experimental Biology and Agricultural Sciences 3 (6), 556-565.
[5] Ganasri BP, Ramesh H. 2015. Assessment of soilerosion by RUSLE model usingremotesensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers 7: 53-961.
[6] Hishe S, Lyimo JB, Bewket W. 2017. Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia. International Soil and Water Conservation Research 5: 231–240.
[7] Duvivier P, Louissaint J, Sampeur U. 2006. Réponse de trois variétés de riz (Oriza sativa, L.) à la fertilisation phosphatée et potassique dans la Vallée de l’Artibonite, Haïti. RED 3 (1): 22—25
[8] Bargout RN, Raizada MN. 2013. Soil nutrient management in Haiti, pre-Columbus to the present day: lessons for future agricultural interventions. Agriculture & Food Security, 2:11. http://www.agricultureandfoodsecurity.com
[9] Zro GBF, Soro D, Abobi DHA. 2018. Analyse comparée des effets de deux amendements organique sur le statut organo-minéral et la productivité d’un sol sableux. Journal of Applied Biosciences 124 : 12416-12423.
[10] John B. 2019. Effet de trois types de composts et fertilisants chimiques sur la croissance et le rendement de la courgette (Cucurbita Pepo L.) dans des sols basaltiques et calcaires à la commune de Kenscoff, Haïti, mémoire de master en Agro-Bio et Tech de l’université de Liège, 46 p.
[11] Samia Q, Muzammil A, Azeem K, Muhammad W, Aniqa B, Tariq M. 2017. A dialogue on perspectives of biochar applications and its environmental risks. Water Air Soil Pollution, 228: 281.
[12] Glaser LA, Paulson AT, Speers RA, Yada RY, Rousseau D. 2007. Foaming behavior of mixed bovine serum albumin–protamine systems. Food Hydrocolloids, 21(4), 495–506.
[13] Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443–449.
[14] Ezzo MI, Glala AA, Saleh SA, Omar NM. 2012. Improving Squash Plant Growth and Yielding Ability Under Organic Fertilization Condition. Australian Journal of Basic and Applied Sciences, 6(8): 572-578, 2012. ISSN 1991-8178.
[15] Mukherjee A, Lal R, Zimmerman AR. 2014. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487, 26–36.
[16] Yuan H, Lu T, Wang Y, Chen Y, Lei T. 2016. Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients.Journal of soil science, 267, 17–23.
[17] Diarra A, Guy CD, Sékongo LG. 2016. Crise de l’eau potable en milieu urbain : cas de la ville de Daloa. Revue de Géographie, 5 (2): 1-20.
[18] Yapi M, De K. 2017. Agence Nationale d’Appui au Développement Rural (CNRA). Fiche technico-économique des produits maraichers, 5p.
[19] Boivin P, Touma J. 1988. Variabilité spatiale de l’infiltrabilité d’un sol mesuré par la méthode du double anneau. Cah. Orstom, sér. Pédol., 24 (3) : 227-234.
[20] Roose E, Blancaneaux P, Freitas PL. 1993. Un simple test de terrain pour évaluer la capacité d’infiltration et le comportement hydrodynamique des horizons pédologiques superficiels : méthode et exemples. Cah. Orstom, sér. P&OL, vol. XXVIII, no 2 : 413-419.
[21] Douagui GA. 2012. Risques de pollution de la nappe du quaternaire de la zone sud du District d'Abidjan : cas du secteur Canal de Vridi-Grand-Bassam (Côte d'Ivoire). Thèse unique de l’Université Nangui Abrogoua (Côte d'Ivoire), option : Géosciences et Environnement Spécialité : Hydrogéologie, 188p.
[22] N’dayegamiye A. 2007. La contribution en azote du sol reliée à la minéralisation de la matière organique : facteurs climatique et régies agricoles influençant les taux de minéralisation d’azote. CRAAQ-OAQ, colloque sur l’azote, 28 p.
[23] Onana OLG, Hammer E, Nérée OO, Ronse F. 2015. Influence de la biomasse carbonisée sur les micro-organismes du sol et la disponibilité du phosphore du sol sous l’agroforèses du cacao dans le sud du Cameroun. Bornimer Agricultural reports, vol 89: 101-101.
[24] N’guessan KA, Diarrassouba N, Alui KA, Nangha KY, Fofana IJ, Yao-Kouamé A. 2015. Indicateurs de dégradation physique des sols dans le Nord de la Côte d’Ivoire : cas de Boundiali et Ferkessédougou. Afrique Science 11(3) : 115 – 128 ; http://www.afriquescience.info.
[25] Dugan E, Verhoef A, Robinson S, Sohi S, Gilkes R, Prakpongkep N. 2010. Charbon biologique à partir de sciure de bois, de tiges de maïs et de charbon de bois : impact sur les capacités de rétention d’eau (WHC) de trois sols du Ghana. 19è congrès mondial des sciences du sol, symposium 4 (2), 9-12.
[26] Karhu K, Mattila T, Bergstron I, Regina K. 2011. L’ajout de biochar au sol agricole a augmenté l’absorption de CH4 et la capacité de rétention d’eau – Résultats d’une étude pilote à court terme sur le terrain. Écosystèmes agricoles et environnement 140 (1) : 309-313.
[27] Giacometti C, Demyan MS, Cavani L, Marzadori C, Ciavatta C, Kandeler E. 2012. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Applied Soil Ecology 64, 32-48. Elsevier. http://dx.doi.org/10.1016/i.apsoil, consulté le 24/11/2021.
[28] Lima ACR, Brussaard L, Totola MR, Hoogmoed WB, De Goede RGM. 2012. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64, 194-200. Elsevier B. V. http://dx.doi.org/10.1016/j.apsoil.
[29] Bunemann EK, Bongiorno G, Bai Z, Creamer RE, De Goede R, Fleskens L. 2018. Soil quality – A critical review. Soil Biology and Biology and Biochemistry 120, 105-125. Published by Elsevier Ltd. http://creativecommons.org/licenses/By/4.0/. Consulté le 24/10/2021.
[30] Bernard E. (2006). L’importance des éléments mineurs : des carences à la toxicité une préoccupation en agriculture biologique, 25 p.
[31] Gaskin J, Adam SR, Harris K, Das KC. 2010. Effet de la coque d’arachide et du biochar de pépins sur les éléments nutritifs du sol, l’état nutritionnel du maïs et le rendement. Journal d’agronomie, 102 (2).
[32] Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, et al. 2006. Liquefaction of crop residues for polyol production. Bioresources 1 (2), 248-256.
[33] Brodowski S, Amelung W, Haumaier L, Zech W. 2007. Contribution du noir de carbone à l’humus stable dans les sols arables. Geoderma 139 (1-2): 220-228.
Published
2022-12-31
How to Cite
Ambéyin, T., Dogniméton, S., Hyppolite, K. K.-K., Sidiky, B., & Tidiani, K. (2022). Influence of agricultural residues on some physical parameters of the soil fertility under eggplant cultivation. GPH-International Journal of Agriculture and Research, 5(12), 09-23. https://doi.org/10.5281/zenodo.7497060