The imprimitive subgroups GL(3,3)

  • Behnam Razzaghmaneshi Assistant professor
Keywords: Imprimitive, generated, presentation


In this paper we determine the imprimitive subgroups of GL(3,3)


Download data is not yet available.

Author Biography

Behnam Razzaghmaneshi, Assistant professor

 Department of Mathematics Talesh Branch, Islamic Azad University, Talesh, Iran


1-Beverley Bolt , T.G.Room and G.E.Wall(1961-62), ”on the clifford collineation, transform
and similarity groups.I and II”.j.Aust.Mast.soc.2 60-96.
2-W.Burnside(1897) , Theory of Groups of Finite Order , 1stedn.Combridge univercity press.
3-W.Burnside(1911) , Theory of Groups of Finite Order , 2nd edn , Combridge univercity
press.Reprinted by Dover New York 1955.
4-Gregory Buttler and John Mckay(1983) , ”The transitive groups of degree up to eleven" ,
comm.Algebra 11 863-911.
5-John , ”An introduction to the group theory language , cayley" , in
computaional Group Theory ed.Michael D.Atkinson Academic press London pp.145-183.
6-Jhon canon(1987) , ”The subgroup lattice module" , in the CAYLEY Bulletin, no.3,
ed.John canon department of pure Mathematics Univercity of sydney pp.42-69.
7-A.L.Cauchy(1845) , C.R.Acad.sci.21 , 1363-1369.
8-A.Cayley(1891) , ”On the substitution groups for two , three, four, five, six, seven and eight
letters" Quart.j.pure Appl.Math.25 71-88 137-155.9-F.N.Cole(1893b) , ”The transitive substitution-groups of nine letters”,
Bull.New York Math.soc.2 , 250-258.
10-S.B.Conlon(1977) , ”Nonabelian subgroups of prime-power order of classical groups of
the same prime degree ”In group theory eds R.A.Bryce J.coosey and M.F.Newman lecture
Notes in Mathematics 573 , springer-verlag, Berlin , Heidelberg,
11-J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker and R.A.Wilson(1985), Atlas of Finite
Groups clarendon press oxford.
12-M.R.Darafsheh , On a permutation character of the Group GLn (q) ,
J.sci.uni.Tehran.VOL1(1996) 69-75.
13-Leonard Eugene Dikson(1901) , Linear Groups whith an Exposition of the Galios Field
theory Leipzig.Reprinted by Dover New York 1958.
14-John.D.Dixon(1971), The structure of linear Groups, Van Nostrand Reinhold, London.
15-John.D.Dixon and Brian Mortimer(1996) , Permutation Groups, springer-verlag
New York Berlin Heidelberg.
16-John.D.Dixon and Brian Mortimer(1988) , ”The primitive permutation groups of degree
less than 1000” Math.proc.comb.philos.soc.103 213-238.
17-Volkmar Felsch and Gunter sandlobes(1984) , ”An interactive program for computing
subgroups”.In Computational Group Theory ed.Michael D.Atkinson Academic press
London , pp.137-143.
18-Fletcher Gross(to appear) , ”On the uniqueness of wreath products” , J.Algebra.
19-Koichiro Harada and Hiroyoshi Yamaki(1979) , ”The irreducible subgroups of GLn (2)
with n  6n ”, G.R.Math.Rep.Acad.Sci.Canada 1 , 75-78.
20-George Havas and L.G.Kovacs(1984) , ”Distinguishing eleven crossing Konts” ,
incomputational Group Theory ed.Michael D.Atkinson Academic press London pp.367-
21-Derek F.Holt and W.plesken(1989) , Perfect Groups, oxford university press, Oxford.
22-B.Huppert(1967) , Endliche Gruppen I, springer-verlag, Berlin , Heidelberg.
23-B.Huppert and N.Blackburn(1982) , Finite Groups  , Springer-verlag, berlin,
24-I.Il’in and A.S.Takmakov(1986) , ”Primitive simple permutation groups of small degress”
Algebra and logic 25 167-171.
25-I.M.Isaucs(1975) , ”Character degrees and derived length of a solvable group”
Canad.J.Math.27 146-151.
26-L.M.Isaucs , characters of   separable groups , j.Algebra 86(1964) , 98-128.
27-C.Jordan(1917), ”Memoire sur less groups resolubles” , Math.(7)3, 263.374.
28-C.Jordan(1974), ”Sur deux points de la theorie des substitution” , C.R.Acad.sci.79, 1149-
29-C.Jordan(1971b), ”Sur la classification des groups primitives”, C.R.A cad.sci.73, 853-
30-H.Jurgensen(1970) , ”Calculation with the elements of a finite group given by generators
and defining relations” in computational problem sin Abstract Algebra ed.John leech
pergamon press, oxford, pp.47-57.
31-T.P.Kirkman(1862-3), ”The complete theory of group , being the solution of the
mathematical prize question of the French Academy for 1860” proc.Manchester
Lit.philos.soc.3, 133-152 , 161-162.Erratum:ibid.4(1865) , 171-172.
32-A.S.Kondrat’ev(1985), ”Irreducible subgroups of the group GL(7,2) ” , Mat.Zametki 37
33-A.S.Kondrat’ev(1986a) , ”Irreducible subgroups of the group GL(9,2) ” , Mat.Zametki 39
34-A.S.Kondratev(1986b), ”linear groups of small degree over a field of order 2” , (Russian)
Algebra I Logika 25 544-565.
35-A.S.Kondratev(1987) , ”The irreducible subgroups of the groupGL8 (2) ” , comm.Algebra
15 1039-1093.
36-L.G.Kovacs , J.Neubuser and M.F.Newman(unpublished notes), ”some algorithms for
finite soluble groups” .
37-L.G.Kovacs(1986) , Maximal subgroups in Composite Finite Groups , J.Algebra 99 , 114-
38-H.W.Kuhu(1904) , ”On impritive substitution groups” , Amer.J.Math.26, 45-102.
39-Arne Ledet(1996) , subgroups of Hol(Q8) as Galios Groups, J.Algebra 181 , 478-506.
40-Martin W.Liebeck , cheryl E.Preeger and Jan Saxl(1988), ”On the O'Nan scott theorem
for finite primitive permutation groups” J.Austral.Math.soc.(series A)44 389-396.
41-G.Liskovec(1973) , ”Maximal biprimary permutation groups” , (Russian), Vesci Akad.
Navuk BSSR ser.Fi z.Math.Navuk 1973 , no.6, 13-17.
42-E.N.Martin(1901) , ”On the imprimitive substituation groups of degree fifteen and the
primitive substitutation groups of degree eighteen” Amer.J.Math.23 259-286.
43-E.Mathieu(1858) , C.R.Acad.sci:46 , 1048-1208.
44-G.A.Miller(1894b) , ”Note on the substitution groups of eight and nine letters” , Bull.New
york Math.soc.3 242-245.
45-G.A.Miller(1898b) , ”on the primitive substitution groups of degree sixteen” ,
Amer.J.Math.20 229-241.
46-G.A.Miller(1895c) , ”Note on the transitive substitution groups of degree twelve” ,
Bull.Amer.Math.soc.(2)1 255-258.
47-G.A.Miller(1899) , ”Note on Burnside’s theory of Groups” , Bull.Amer.Math.soc.(2)5 ,
48-G.A.Miller(1900) , ”0n the transitive substitution groups of degree seventeen” ,
Quart.J.Pure Appl.Math.31 49-47.
49-G.A.Miller(1900b) , ”On the primitive substitution groups of degree ten”, Quart.J.Pure
Appl.Math.31 228-233.
50-M.F.Newman(1976) , ”calculating presentations for certain kinde of quotinet groups” ,
SYMSAG’76 Association for computing Machinery New York pp.2-8.
51-M.F.Newman and E.A.O'Brien(1989) , ”A CAYLEY library for the groups of order
dividing 128” in Group theory eds K.N.cheng and Y.K.Leong Walter de Gruyter Berlin,
New York pp.437-442.
52-W.Nickel, A.Niemeyer and M.Schonert(1988) , GAP Getting started and refrence manual
Lehrustuhl D fur Mathematik RWTH Aachen.
53-W.Plesken(1987), ”To wards a soluble quotient algoritm” , J.symbolic comput.4, 111-
54-B.A.Pogorelov(1982) , ”Primitive permutation groups of degree n51,64 ”, in Eighth
All-Union Symposium on Group theory Abstracts of Reports Institue of Mathematices
Academy of scineces of the UkrSSR , Kiev, p.98.
55-B.A.Pogorelov(1980) , ”primitive permutation groups of low degree” , Algebra and logic
19 230-254 278-296.
56- B. Razzaghmaneshi, Determination of the JS-maximal of GL(n, pk). Ph.D Theses, 2002,
IUH university
How to Cite
Razzaghmaneshi, B. (2018). The imprimitive subgroups GL(3,3). GPH - International Journal of Mathematics, 1(1), 12-19. Retrieved from