Numerical Solution of Fractional order Chlamydia Model Via the Generalized Fractional Adams-Bashforth-Moulton Approach
Abstract
In this study we examine the epidemiological features of chlamydia infection using a fractional-order mathematical model, evaluating the impact of vaccine and therapy on the dynamics of disease transmission. In the fractional-order framework, the study determines the existence and uniqueness of solutions and uses the Lyapunov function approach to examine the stability of the endemic equilibrium. Numerical simulations that employ the fractional Adams–Bashforth–Moulton approach show how fractional-order values and model parameters impact the control and spread of the disease. More simulations, such as surface and contour plots, show that a higher prevalence of chlamydia is a result of increased contact rates and decreased treatment effectiveness. The results highlight how the infection's spread within the community can be successfully stopped by improving vaccine and treatment plans.
Downloads
References
Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates [Internet]. World Health Organization; c2001 [cited 2022 Feb 10]. Available from: https:// apps.who.int/iris/bitstream/handle/10665/66818/?sequence=1
World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021: accountability for the global health sector strategies 2016–2021: actions for impact: web annex 2: data methods. World Health Organization; 2021.
Thylefors B, Négrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995; 73:115–21.
Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304.
Sexually transmitted infections (STIs) [Internet]. World Health Organization; c2021 [cited 2022 Feb 10]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/sexuallytransmitted-infections-(stis)
Chlamydia – CDC basic fact sheet [Internet]. USA: CDC; [cited 2022 Feb 10]. Available from: https://www.cdc.gov/std/chlamydia/stdfact-chlamydia.htm
Paavonen J, Lehtinen M. Chlamydial pelvic inflammatory disease. Hum Reprod Update. 1996; 2:519–29.
Paavonen J, Eggert-Kruse W. Chlamydia trachomatis: impact on human reproduction. Hum Reprod Update. 1999; 5:433–47.
Diethelm .K., (2022) The Frac PECE subroutine for the numerical solution of differential equations of fractional order,.DOI: https://doi.org/10.33003/fjs-2023-0706-2174.
Podlubny.I., (1998) Fractional differential equations, an introduction to fractional derivatives, in:Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Elsevier.
Atokolo, W., Aja, R. O., Aniaku, S. E., Onah, I. S., &Mbah, G. C. (2022).Approximate solution of the fractional order sterile insect technology model via the Laplace– Adomian Decomposition Method for the spread of Zika virus disease.International Journal of Mathematics and Mathematical Sciences, 2022(1), 2297630.
Atokolo W a, RemigiusAja .O. ,Omale .D., Ahman .Q. O.,Acheneje G. O., Amos . J. (2024) Fractional mathematical model for the transmission dynamics and control of Lassa fever Journal of journal homepage: www.elsevier. 2773-1863/© 2024com/locate/fraopehttps:// doi.org/10.1016/j.fraope.2024.100110.
Yunus. A.O, M.O. Olayiwola, M.A. Omolaye, A.O. Oladapo, (2023) A fractional order model of lassa fever disease using the Laplace-Adomian decomposition method, Health Care Anal. 3 100167, www.elsevier.com/locate/health.Health care Analytics.
Omede.B. I, Israel. M.,Mustapha .M. K. , Amos J. ,Atokolo .W. , and Oguntolu .F. A. (2024) Approximate solution to the fractional soil transmitted Helminth infection model using Laplace Adomian Decomposition Method.Journal of mathematics. (2024) Int. J. Mathematics. 07(04), 16-40.
Amos J., Omale D., Atokolo W., Abah E., Omede B.I., Acheneje G.O., Bolaji B. (2024), Fractional mathematical model for the Transmission Dynamics and control of Hepatitis C,FUDMA Journal of Sciences,Vol.8,No.5,pp.451-463, DOI: https://doi.org/10.33003/fjs-2024-0805-2883.
Philip J., Omale D., Atokolo W., Amos J., Acheneje G.O., Bolaji B. (2024), Fractional mathematical model for the Transmission Dynamics and control of HIV/AIDs,FUDMA Journal of Sciences,Vol.8,No.6,pp.451-463, DOI: https://doi.org/10.33003/fjs-2024-0805-2883.
Abah E., Bolaji B., Atokolo W., Amos J., Acheneje G.O., Omede B.I, Amos J.,Omeje D. (2024), Fractional mathematical model for the Transmission Dynamics and control of Diphtheria ,International Journal of mathematical Analysis and Modelling,Vol.7,ISSN:2682-5694.
Ahmed I., . Goufo E. F. D,Yusuf A., Kumam .P., Chaipanya P., and Nonlaopon K. ( 2021), “An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC fractional operator,” Alexandria Engineering Journal, vol. 60, no. 3, pp. 2979–2995.
Smith, J., Johnson, A.B., & Lee, C. (2023), "Modeling the coinfection dynamics of hepatitis C and COVID-19: A systematic review,"Journal of Epidemiology and Infection, 151(7), pp. 1350–1365.
Ullah. A.Z. T. Abdeljawad, Z. Hammouch, K. Shah, A hybrid method for solving fuzzy Volterra integral equations of separable type kernels, J. King Saud Univ. - Sci. 33 (2020) http://dx.doi.org/10.1016/j.jksus.2020.101246.
Das, R., Patel, S., & Kumar, A. (2024), "Mathematical modeling of hepatitis C and COVID-19 coinfection in low- and middle-income countries: challenges and opportunities,"BMC Public Health, 24(1), pp. 587.
Ali.Z., Zada.A.,Shah. K., Existence and stability analysis of three-point boundary value problem, Int. J. Appl. Comput. Math.3 (2017) 651–664, http://dx.doi. org/10.1007/s40819-017-0375-8.
Milici C., G. Draganescu, J.T. Machado, Introduction to Fractional Differential Equations, Springer, 2018.
Bonyah. E., Zarin, R. Fatmawati, Mathematical modeling of Cancer and Hepatitis co-dynamics with non-local and nonsingular kernal, 2020, 2052–2541.https://doi.org/10.28919/ cmbn/5029.
Baskonus. H.M., Bulut H., (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams Bashforth-Moulton Method, Open Math. 13 1.
Zhang.R.F.,Li. M.-C.,Gan. J.Y., Li.Q., Lan.Z.-Z., (2022). Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Solitons Fractals 154 (C). Results in Physics, vol. 37, article 105498.
Nyarko Christiana Cynthia, Nsowa-Nuamah Nicholas Nicodemus Nana, Nyarko Peter Kwesi, Wiah Eric Neebo, Buabeng Albert Modelling Chlamydia trachomatis infection among Young women in Ghana: A case study at Tarkwa NsuaemMunicipalityAm. J. Appl. Math., 9 (3) (2021), pp. 75-85
Sharma Swarnali, SamantaG.P.Analysis of a Chlamydia epidemic model
J. Biol. Syst., 22 (04) (2014), pp. 713-744.
Odionyenma U.B., Omame A., Ukanwoke N.O., NometaI.Optimal control of Chlamydia model with vaccinationInt. J. Dyn. Control, 10 (1) (2022), pp. 332-348.
Samanta G.P., Sharma Swarnali,Analysis of a delayed Chlamydia epidemic model with pulse vaccination Appl. Math. Comput., 230 (2014), pp. 555-569.
Atokolo W a, RemigiusAja .O. , Omale .D., Paul .R. V. ,Amos . J.,Ocha S. O., (2023) Mathematical modeling of the spread of vector borne diseases with influence of vertical transmission and preventive strategies FUDMA Journal of sciences: Vol. 7 No. 6, December (Special Issue), pp 75 -91 DOI: https://doi.org/10.33003/fjs-2023-0706-2174
The authors and co-authors warrant that the article is their original work, does not infringe any copyright, and has not been published elsewhere. By submitting the article to GPH - International Journal of Mathematics, the authors agree that the journal has the right to retract or remove the article in case of proven ethical misconduct.