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Abstract:  We will investigate which integers can be written as the sum of 

squares. Different examples are given to supplement each given theorems. 

Introduction:  We say that a positive integer 𝒏 is representable as asum of 

two squares if 𝒏 = 𝒂𝟐 + 𝒃𝟐
 for some integers 𝒂 and.  We include 𝟎 as a 

possible value of 𝒂 and 𝒃.  We also say that a positive integer 𝒏 is 

representable as a sum of 𝒎 squares if 𝒏 = 𝒂𝟏
𝟐 + 𝒂𝟐

𝟐 + 𝒂𝟑
𝟐 + ⋯ + 𝒂𝒎

𝟐
 for some 

integers m and ia . 

1. The Sum of Two Squares 

Theorem 1. An integer 𝒏 is the sum of two squares⇔ 𝟐𝒏 is the sum of the 

squares. 

Proof (1)    Assume 𝒏 is the sum of two squares.  Let  𝒏 = 𝒂𝟐 + 𝒃𝟐
 for 

integers 𝒂 and 𝒃. 

 Then 𝟐𝒏 = 𝟐(𝒂𝟐 + 𝒃𝟐) 

 ⇒ 𝟐𝒏 = (𝒂 + 𝒃)𝟐 + (𝒂 − 𝒃)𝟐
 

 ⇒ 𝟐𝒏 is the sum of two squares 

 (2)   Assume 𝟐𝒏 = 𝒄𝟐 + 𝒅
𝟐
.  Since 𝒄 and 𝒅 are both even or both 

odd 𝒄 + 𝒅 and 𝒄 − 𝒅 are even integers. 

𝒏 = (
𝒄 + 𝒅

𝟐
)

𝟐

+ (
𝒄 − 𝒅

𝟐
)

𝟐

 

 ⇒  𝒏 is the sum of two squares. 

The theorem follows by (1) and (2). 
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Example 1. Let 𝒏 = 𝟐𝟗then 

 𝒏𝟐 = 𝟓𝟐 + 𝟐𝟐 and 

 𝟐𝒏 = 𝟓𝟖 = 𝟕𝟐 + 𝟑𝟐
 

Theorem 2. If 𝒏 a triangular number, prove that even if each of the three 

consecutive integers 𝟖𝒏𝟐
,𝟖𝒏𝟐 + 𝟏, and 𝟖𝒏𝟐 + 𝟐  can be expressed as a sum 

of two squares. 

Proof 

  1) 𝟖𝒏𝟐 = (𝟐𝒏)
𝟐

+ (𝟐𝒏)
𝟐
, hence sum of two squares 

 2)  𝒏 is a triangular number  

 ⇒ 𝒏 =
𝒎(𝒎+𝟏)

𝟐
 

 ⇒ 𝟖𝒏 = 𝟒𝒎(𝒎 + 𝟏) 

 ⇒ 𝟖𝒏 = 𝟒(𝒎)(𝒎 + 𝟏) + 𝟏 

 = 𝟒𝒎𝟐 + 𝟒𝒎 + 𝟏 

 = (𝟐𝒎 + 𝟏)𝟐
 

Hence 𝟖𝒏 + 𝟏 is a perfect square. 

 Let 𝟖𝒏 + 𝟏 = 𝒌𝟐
 

Now observe that 

𝟐(𝟖𝒏𝟐 + 𝟏) = (𝟒𝒏 + 𝟏)𝟐 + (𝟖𝒏 + 𝟏) 

 = (𝟒𝒏 + 𝟏)𝟐 + 𝒌𝟐
 

 ⇒by Theorem 1, 𝟖𝒏𝟐 + 𝟏 is a sum of two squares 

 3)  Note that 

𝟖𝒏𝟐 + 𝟐 = (𝒎(𝒎 + 𝟏) + 𝟏)𝟐 + (𝒎(𝒎 + 𝟏) − 𝟏)𝟐
 

                a sum of two squares also. 

 

Theorem 3.  If each of the natural numbers 𝒙 and 𝒚 is a sum of two 

squares then so is 𝒙𝒚. 
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Proof   Let 𝒙 = 𝒂𝟐 + 𝒃𝟐
and = 𝒄𝟐 + 𝒅𝟐

 .   Then 

 𝒙𝒚 = (𝒂𝟐 + 𝒃𝟐)(𝒄𝟐 + 𝒅𝟐) 

 = 𝒂𝟐𝒄𝟐 + 𝒂𝟐𝒅𝟐 + 𝒃𝟐𝒄𝟐 + 𝒃𝟐𝒅𝟐
 

 = 𝒂𝟐𝒄𝟐 + 𝟐𝒂𝒃𝒄𝒅 + 𝒃𝟐𝒅𝟐 + 𝒂𝟐𝒅𝟐 − 𝟐𝒂𝒃𝒄𝒅 + 𝒃𝟐 + 𝒄𝟐
 

 = (𝒂𝒄 + 𝒃𝒅)𝟐 + (𝒂𝒅 − 𝒃𝒄)𝟐. Thus the theorem is proved. 

Remark1      xy can an also be written as 

  𝒙𝒚 = (𝒂𝒄 − 𝒃𝒅)𝟐 + (𝒂𝒅 + 𝒃𝒄)𝟐
 

Example 2. 

  𝟔𝟓 = 𝟓 ∙ 𝟏𝟑 Note that  

  𝟓 = (𝟐𝟐 + 𝟏) 𝒂𝒏𝒅 𝟏𝟑 = 𝟑𝟐 + 𝟐𝟐
 

  𝒂 = 𝟐     𝒃 = 𝟏     𝒄 = 𝟑     𝒅 = 𝟐 

So, we have 

 𝟔𝟓 = (𝟔 + 𝟐)𝟐 + (𝟒 − 𝟑)𝟐 = 𝟖𝟐 + 𝟏𝟐
 

 = (𝟔 − 𝟐)𝟐 + (𝟒 + 𝟑)𝟐 = 𝟒𝟐 + 𝟕𝟐
 

We state the following two Theorem without proof and use them. 

Theorem 4.   If the prime 𝑷 ≡ 𝟏(𝒎𝒐𝒅 𝟒) then there exist unique 

integers 𝒙 and𝒚 such that 𝒙 > 𝒚 > 𝟎 and 𝒑 = 𝒙𝟐 + 𝒚𝟐
. 

 

Example 3. Let p= 97. Then 𝑷 ≡ 𝟏(𝒎𝒐𝒅 𝟒) and 97 can be 

expressed as sum of two squares. Note 97= =𝟗𝟐 + 𝟒𝟐
. 

 

 Theorem 5.  Let n be a positive integer. Then n can be expressed as the       
sum of two squares if and only if all prime factors of n of the form 4t+3 have 
even exponents in the factorization of n. 

Example 4. Take n= 162.   Then  n= 2(
43 ) and 3 is  a prime factor 

of the form 4t+ 3  with even exponent 4 and hence can  be 

expressed as the sum of two squares.  Note that 162=𝟗𝟐 + 𝟗𝟐
. 
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2. The sum of three squares. 

 

Lemma 1: Every number can be expressed as the sum of 3 triangular 

numbers. 

Theorem 6  Every number of the form 8𝒌 + 𝟑 can be expressed as the 

sum of three squares. 

Proof By Lemma 1, 𝑲  can be written as the sum of three triangular 

numbers. That is,  

𝑲 =
𝒂(𝒂 + 𝟏)

𝟐
+

𝒃(𝒃 + 𝟏)

𝟐
+

𝒄(𝒄 + 𝟏)

𝟐
 

⇒ 𝟖𝑲 + 𝟑 = 𝟒𝒂(𝒂 + 𝟏) + 𝟒𝒃(𝒃 + 𝟏) + 𝟒𝒄(𝒄 + 𝟏) 

   ⇒ 𝟖𝑲 + 𝟑 = 𝟒𝒂𝟐 + 𝟒𝒂 + 𝟒𝒃𝟐 + 𝟒𝒃 + 𝟒𝒄𝟐 + 𝟒𝒄 + 𝟏  

  = (𝟐𝒂 + 𝟏)𝟐 + (𝟐𝒃 + 𝟏)𝟐 + (𝟐𝒄 + 𝟏)𝟐
 

Hence the theorem is proved 

Remark2:  A number can be expressed as the sum of three squares in only 

one way. 

We state the following important theorem without proof and use it. 

A natural number can be represented as the sum of three squares of 

integers. 

 𝒏 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ⇔  𝒏 is of the form 

 𝒏 = 𝟒𝒎(𝟖𝒌 + 𝟕) for integers  𝒎  and 𝒌 

Example 5 List five integers that can be expressed as the sum of three 

square integers using  𝒏 = 𝟖𝒌 + 𝟑 

𝒌 = 𝟎 ⇒ 𝒏 = 𝟑 = 𝟏𝟐 + 𝟏𝟐 + 𝟏𝟐
 

𝒌 = 𝟏 ⇒ 𝒏 = 𝟏𝟏 = 𝟑𝟐 + 𝟏𝟐 + 𝟏𝟐
 

𝒌 = 𝟐 ⇒ 𝒏 = 𝟏𝟗 = 𝟐𝟐 + 𝟑𝟐 + 𝟏𝟐
 

𝒌 = 𝟑 ⇒ 𝒏 = 𝟐𝟕 = 𝟑𝟐 + 𝟑𝟐 + 𝟑𝟐
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𝒌 = 𝟒 ⇒ 𝒏 = 𝟑𝟓 = 𝟓𝟐 + 𝟑𝟐 + 𝟏𝟐
 

 

Theorem  7 Let n be a positive integer. Then n can be expressed 
as the sum of three squares if and only if n is not of the form  
4 k  (8t + 7). 

 
Example 6.    Let n= 15. Then 15 is of the form 4 k  (8t + 7) and cannot 

be expressed as the sum of three squares. 

           

3. The sum of four squares. 

Lagrange’s Theorem: We state the theorem without proof and 

use it. 

Theorem 8 Every natural number is the sum of four squares. 

Example 4: 

 (𝟏)    𝟓 = 𝟐𝟐 + 𝟏𝟐 + 𝟎𝟐
 

  (𝟐)   𝟐𝟏 = 𝟒𝟐 + 𝟐𝟐 + 𝟏𝟐 + 𝟎𝟐
 

 (𝟑)   𝟐𝟖 = 𝟓𝟐 + 𝟏𝟐 + 𝟏𝟐 + 𝟏𝟐
 

 

(4)  Sum of squares of consecutive integers 

Theorem 8 The sum of the squares of the first 𝒏 natural numbers is given 

by 

∑ 𝒌𝟐

𝒏

𝒌=𝟏

=
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

 Proof:       Easily follows using induction. 

 

 Corollary 1: The sum of the squares of the first 𝒏 even natural numbers 

is given by 
 

GPH - Journal of Mathematics            

Volume-1 | Issue-1 | August,2018                                    Published by GPH Journal www.gphjournal.com 9



∑(𝟐𝒏) 2

𝒏

𝒌=𝟏

=
𝟐𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟑
 

 

Corollary 2.  The sum of the squares of the first    even odd natural 

numbers is given by 

∑(𝟐𝒏 − 𝟏) 2

𝒏

𝒌=𝟏

=
𝒏(𝟐𝒏 + 𝟏)(𝟐𝒏 − 𝟏)

𝟑
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