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ABSTRACT

The Mulatu numbers were introduced by Mulatu Lemma in [1].The Mulatu numbers are integral
sequences of numbers of the form: 4, 1, 5,6,11,17,28,45...These numbers have wonderful and amazing
properties and patterns.

In mathematical terms, the sequence of the Mulatu numbers is defined by the following recurrence relation:
4 if n=0;
M, = 1 if n=1
M, +M , if n>1
The first number of the sequence is 4, the second number is 1, and each subsequent number is equal to
the sum of the previous two numbers of the sequence itself. That is, after two starting values, each
number is the sum of the two preceding numbers. In [1] some properties and patterns of the numbers
were considered. In this paper, we more deeply examine additional properties and patterns of these

fascinating and mysterious numbers. Many beautiful mathematical identities involving the Mulatu

numbers, the Fibonacci numbers and the Lucas numbers will be explored.
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1. Introduction and Background. As given in [1], the Mulatu numbers are a sequence of numbers
recently introduced by Mulatu Lemma, an Ethiopian Mathematician and Distinguished Professor of
Mathematics at Savannah State University, Savannah, Georgia, and USA. The Mulatu sequence has
wealthy mathematical properties and patterns like the two celebrity sequences of Fibonacci and Lucas.

In this paper, more interesting relationships of the Mulatu numbers to the Fibonacci and Lucas numbers will

be presented.

Here are the First 21 Mulatu, Fibonacci, and Lucas numbers for quick reference.

Mulatu(Mn),Fibonacci(Fn)anaLucas(L,)Numbers
( Tables 1 &2)

Table 1

Table 2

Remark1: Throughout this paper M, F, and L stand for Mulatu numbers, Fibonacci numbers, and Lucas
number respectively.

The following well-known identities of Mulatu numbers [1], Fibonacci numbers, and Lucas numbers are
required in this paper and hereby listed for quick reference.

oL, =F,+F,
@QF.=F+F,
e M, =L,+2F .
@ F,,=F,L,
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(5)5F% - L =4(-1)™"

L.,+L
6 F— n+1 n-1
©6) F, 5
(7) I-n+1 - Ln +Ln 1

L SRR +LL,
(10) —n+m - 2

The Main Results.
Proposition 1.

Mzn —M2n+1—M2n—1 +2M Mn{l:O

n+1

Proof: The proposition easily follows using the recurrence formula
Mn+1 = Mn + Mn—l
Proposition 2.

M,=4F,  +F,

n

: : M, - I:n+1
Proof:Theorem 9 [1] implies that F ,_, = T . Thus we have

3F, +F. =M, =>M =4F  +F
Theorem 1.
M ne2 T 7Fn+1 - Ln

Ln+l + Ln—l
5
= 5Fn—1 = Ln + Ln—ZZ(M n_2 Fn—l)+ I‘n—2

Proof: Note that from above F, =

= 7F,-L ,=M,
= Mn+2 = 7Fn+l - I-n
Theorem 2.

(@) If M is divisible by 2, then M *1.1 — M %11 is divisible by 4

(b) If M is divisible by 3, then M 3net — M 211is divisible by 9.
Proof: Note that:
@ MZu—M?%a
=M., M, M, +M _)=M, (M, +M_,+M_,)=M?* +2M M, .

n+.

Now it is easy to see that if M _is divisible by 2, then M ?n.1 — M 11 is divisible by 4
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(b) M 3n+l -M 3”*1 = (M n+l M n—1)(M 2n+l +M nM nat M zn_l)

M na T M 2n—l)

n+l

=M, (M%1+M
M, (M, +M, P +M, (M, +M, )+ M)
=M, (M2 +3M M, , +3M 1)
=M?3* +3M*%M_, +3M M3,

Hence M , is divisible by 3= M % h1- M 204 is divisible by 9.
Theorem 3.The addition formula for Mulatu numbers.
My =FaM +FE M,
Proof: By Theorem 8[1] we have,
M, F;+F.+F., _

Hence it follows that

M = Fn+k—3 + I:n+k—1 + M

n+k n+k+2 -

Now using the addition formula for Fibonacci numbers given above, it follows that
M, =(F ,F +F F_,)+F_F_,+FF)+F _,F., +F.F.5)
=(F iRt R +Ra+ Rk +F R +F R+ FRG)
=R (R +Ra+ R+ R P+ R+ Fos)
=F M, +F, M, ,.

Hence the theorem is proved.
Theorem 4:

M, ,=F,, —3F 21+ 6F.F.
Proof: By Theorem 3 we have,

My =M wy=FaM, +FEM,
=F_ M, ,+F(L +2F, )
=F_ M ,+FL +2FF
=F_M . +F +2FF .

Now applying Theorem 3to M, we have

M,,=M (n-1)+0 — F.oMo+F M =4F , +F , and
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4F ,+F,,=4(F,—-F ))+F ,=-3F _,+4F,.

Hence, I\/|2n—1 = FZn + Fn—l (_3Fn—1 +4Fn) + 2Fn I:n71: an -3F 2“—1 + 6Fn Fn—l

Theorem4. The Subtraction formula for Mulatu numbers

M, . =4F ., —-3F
Proof: M, = M )., and hence by Theorem 3, we have
M. =F.aMe+F M,
=4F, ., +F._
=4F, ,,+F, ,)3F,

= 4'I:n—kﬁ-l' 3Fn—k .
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Corollary 1.
M, =4F , -3F

n:

Theorem 5.

FZn' I\/ln I:nJrl_I: F :'LZ”

n+l" n
Proof: We use the identities listed above to prove the theorem.

Note that I:2n -M n I:n+1_ I:n+l I:n = I:n Ln -M n I:n+1_ I:n+l I:n
= I:n (Fn—l + Fn+l) - I:nJrl(I-n + 2Fn—1) - I:n+1 I:n
= I:n (Fn—l + Fn+1)’(|:n + Fn—l)(Ln + 2Fn—1) - I:nJran

=F (F_,+F,)-
(F,+F )F,,+F,,+2F, )—(F, +F )F,
=F (F,+F,+F,)-

(F,+F D)F+F ,+F ,+2F )—-(F,+F, )F,
=F (2F,,+F)-(F, +F )F,+4F ) —(F, +F _,)F,
=2F,F, , +F%-

F’.—4F F ,-FF _ —4F °-F% —F ,F,
= -F% —4F F, , —4F %
=-(F% +4F F, , +4F%)

= _(Fn +2Fn—l)2
= '(Fn + I:n—l + I:n—l) ?

=-1?,

The following result deals with the half-angle type formula. It is rather an amazingly interesting strong
result.

Theorem 6. Fundamental identity.
M, =ML, + 4(—1)n+1

Proof: By Theorem3, M,, =M,  =F, , M +F M, . . Againapplying Theorem 3,to M, and
usingL,, =F.,, + F,;, we get
M2n = Fn—l M n + I:n(lzn—ll\/ll + FnMZ)
= I:n—l M n + I:n(Fn—l +5Fn) :
=F,,M +FF_ +5F%.

=((L, -F,, M, +FF_ +5F%

n' n-1
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=LM,-F M +FF_ +5F?%

n' n-1

=L.M_ - (F, +F )L, +2F ,)+F F _, +5F%

n' n-1

=L M -(F, +F _)F.,+F_+2F ))+FF, _, +5F%

n' n-1
=L .M, -(F, +F _)F,+4F )+F F,, +5F%
n' n-1 n’ n-1 n' n-1

=L M, -F% —4F F ,-F F _, —4F%.41+F F _, +5F%

=L M -F% —4F F ,-4F%.1+5F%,

n
= LM, -(F% +4F F _ +4F%.1)+5F?%,
From the proof of Theorem 5, we know that F %y +4F F,  +4F %= L%,
Hence M,, = LM, -L% +5F?%,. Nowusingthat 5F% -L%=4(-1)""
it easily follows that M ,, = L, M +4(=1)""
Remark 2: Note that using Corollary 1, we can also express M, as follows:
M, =4F,. ., —3F,,.
Corollary 2.
M,, = L% +4F*1+2F F

n

. +4(_1)n+1

Proof: Wehave M, =M L, +4(-1)""
= (Ln + 2Fn—l) I‘n +4 (_ 1)“*1
=% +2F, L, +4(-1)™

=L% +2F, (F,, +F, )+4(-1)""

n+1

=% +2F ,(F, +F _, +F _)+a(-1)"

=L% +4F %1+ 2F F, ,+4(-1)"™
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Corollary 3.Square Expansion
M2y =M,, +2M F _, +4(-1)
Proof: Note that
M2 =M M, =M, (L, +2F ,)=M, L, +2M F ,.

Hence the corollary follows by Theorem6.

Theorem 7.
9F,” + L%, + 4F %o .
, tL2+ 1=LnMn+4(_1)1
2
oroor. JFn + L0 +4F %y BF + L% +4F " +4F %
: 5 .
_5Fn2 +L°

+2F 2+ F%

Now by addition formula for Lucas numbers and Fibonacci numbers given above, we get

9%+ % +4F %

=L, + 2F%1+2F°_ L, +2F, ,.

2
Now using
M,=L,+ 2F“—1, we obtain that
9%+ L% +4F*n-1
2 =M,,
Thus theorem follows by Theorem 6.
Some Open_Questions.
Q) Are there any more triangular numbers in Mulatu numbers other than 1, 6, 28, and 45?
If so, are they finite or infinite?
2 Are there anymore Fermat numbers in Mulatu numbers other than 5 and 17?
If so, are they finite or infinite?
3) Avre there any more Fibonacci numbers in Mulatu numbers other than 1 and 5?
If so, are they finite or infinite?
4) Are there any more Lucas numbers in Mulatu numbers other than 1 and 11?
If so, are they finite or infinite?
(5) Observe that for n=1,6,11, 16, and 21 all M, F, and L numbers have the same last digit.

Is this pattern finite or infinite?
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