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A B S T R A C T 

The triangular numbers are formed by partial sum of the series 1+2+3+4+5+6+7…. +n [2].  In other 

words, triangular numbers are those counting numbers that can be written as nT
 = 1+2+3+…+ n.   

So, 

T1= 1 

T2= 1+2=3 

T3= 1+2+3=6 

T4= 1+2+3+4=10 

T5= 1+2+3+4+5=15 

T6= 1+2+3+4+5+6= 21 

T7= 1+2+3+4+5+6+7= 28 

T8= 1+2+3+4+5+6+7+8= 36 

T9=1+2+3+4+5+6+7+8+9=45 

T10 =1+2+3+4+5+6+7+8+9+10=55 

In this paper we investigate some important properties of triangular numbers. Some important 

results dealing with the mathematical concept of triangular numbers will be proved.  We try our 

best to give short and readable proofs.  Most of the results are supplemented with examples. 
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1. Introduction : 

The sequence 1, 3, 6, 10, 15, …, n(n + 1)/2, … shows up in many places of mathematics[1] .  The Greek 

called them triangular numbers [1]. The triangular number is a figurate number that can be represented 

in the form of a triangular grid of points where the first row contains a single element and each subsequent 

row contains one more element than the previous one as shown below [2]. 

                           * 

                                    *                              *   * 

                *       *   *                         *   *   * 

            *           *   *                *   *   *                    *   *   *   * 

     *         *   *                 *   *   *                 *   *   *   *              *   *   *   *   * 

*          *   *        *   *   *            *   *   *   *            *   *   *   *   *         *   *   *   *   *   * 

1            3  6 10 15 21 

Mathematicians have been fascinated for many years by the properties and patterns of triangular numbers [2].   

We can easily   hunt for triangular numbers using the formula: 

 

 

 

The first 20 triangular numbers are as follows. 

The Main Results: 

Theorem 1:  Every triangular number is a binomial coefficient . 

 Proof without words      Refer to the following Pascal’s Triangle [2] and see the red colored numbers. 

1  

1  1  

1  2  1  

1  3  3  1  

1  4  6  4  1  

1  5  10 10 5  1  

1  6  15 20 15 6  1  

1  7  21 35 35 21 7  1  

1  8  28 56 70 56 28 8  1  

1  9  36 84 126 126 84 36 9  1  
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Remark1: Also note that 
( 1)

 
2

n

n n
T


    n+1

  2
 which is a binomial coefficient for each n 1 . 

Theorem 1:   T is a triangular number 8T+1 is a perfect square. 

Proof:  (i) ( ) Assume T is a triangular number.   

Let    T= 
2

)1( nn
, n a positive integer. 
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nn
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 
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2

)144(
218

2 


nn
T  

  = (2n+1)(2n+1) 

 = (2n+1)
2

  

 Hence, 8T+1 is a perfect square. 

(ii)  Assume  8T+1 is a perfect square.  Then  8T+1  is odd   for some positive integer n, we have  

8T+1= (2n+1)
2

= 
24 4 1n n   implies that  T== 

2

)1( nn
. 

Hence, T is a triangular number.       

By (i) and (ii) the theorem is proved. 

Example 1.  6 is a triangular number implies that 8(6) +1 =49 is a perfect square 

Example 2.  8(15) +1= 121, a perfect square implies that 15 is a triangular number. 

Corollary 1. T is a triangular number  n = 
2

118 T
 is an integer. 

Proof:  The corollary easily follows by Theorem 1. 

 

Theorem 2:  If Tm and Tn are triangular numbers, then 
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m n m nT T T mn   
  for m and  n positive integers. 

Proof: 

 Note: 
2

)1( 


mm
Tm & 

( 1)

2
n

n n
T


 . Then 

 mnTT nm   
( 1) ( 1)

2 2

m m n n 
  +mn 

  = mn
nnmm




2

22

 

 = 
2

222 mnnnmm 
=  

2

2 22 nmnmnm 
 

  =
2

)())(( nmnmnm 
= 

 
2

1)(  nmnm
= nmT   

Example 3.  Consider 3 4 and TT .  Note that 3 4= 6  and T 10T  . Observe that 3 4T   7 =28 T  and 

3 4 + T 3(4) 6 10 12 28T      .  

Hence,   3 4 =T  3 4 + TT +3(4) 

Theorem 3:   If Tm and Tn are triangular numbers, then 

 

1 1mn m n m nT T T T T    

Proof:  Note:  
2

)1( 


mm
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2
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  =  






 

4

2222 mnnmmnnm
+ 







 

4

2222 mnnmmnnm
    

  =  
4

22 22 mnnm 
=  

4

)1(2 mnmn
=  

2

)1( mnmn
 

  = mnT  

 Example 4.  Let m =6 and n =7. Then  6 721 and T 28.T    

  By using  (6)(7) 42

( 1) 42(43)
, we get T =T 903

2 2
n

n n
T


    

 We also have   5 6 6 7 5 615(21) 315 and TT T T T T     588+315=903.  

 Hence, (6)(7)T = 42 6 7 5 6T T T T T    

Lemma 1.  The sum of two consecutive triangular numbers is a perfect square 

Proof:  Let 1nT  and nT  be any two consecutive triangular numbers, such that 

 1nT   = 
2

))(1( nn 
  and nT = 

2

)1( nn
  

Then,  

     1n nT T  = 
2

)1(

2

)1( 


 nnnn
   

    = 
2

22 nnnn 
=

2

2 2n
=

2n  

  Which is a perfect square.  

Example 5. Let  6 7  and TT  be any consecutive triangular numbers.  Then

6 7 +  21+28= 49T T  , which is a perfect square. 

Lemma 2.  
2 2 2 2 2 ( 1)(2 1)

1 2 3 4 ...
6

k k k
k

 
       

Proof. We can easily prove the lemma using induction. 
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Example 6.  Let k = 5 . Then  
2 2 3 2 21 2 3 4 5 1 4 9 16 25 55          .   

Also, we have 
5(6)(11)

6
 55 and hence 

2 2 3 2 2 5(6)(11)
1 2 3 4 5 .

6
      

Theorem 4.  If  kT  be triangular numbers for k 0k  ,  then we have 

 
1

( 1)( 2)

6

n

k

k

n n n
T



 
    

Proof:   To prove the theorem, we apply   divide and conquer method   by considering   two cases: 

  (1)   If n is even, say n =2k, then 

1 2 1 2 3 4 2 1 2... ( ) ( ) ... ( )n k kT T T T T T T T T         
 

  =
2 2 22 4 ... (2 )k     ( by Lemma 1) 

 =  
2 2 24(1 2 ... )k    

 = 
4 (2 1)( 1)

6

k k k 
 (by Lemma 2). 

  =
( 1)( 2)

6

n n n 
     as  n = 2k 

 (2)   If n is odd, say n= 2k+1, then 

1 2 1 2 3 4 2 1 2 2 1... ( ) ( ) ... ( )n k k kT T T T T T T T T T           
 

=
2 2 22 4 ... (2 )k    +

(2 1)(2 2)

2

k k 
 ( by Lemma 1 and definition of kT ) 

=  
2 2 24(1 2 ... )k   +

(2 1)(2 2)

2

k k 
 

 = 
4 (2 1)( 1)

6

k k k 
+

3(2 1)(2 2)

6

k k 
 ( by Lemma 2.) 

                           = 
2 (2 1)(2 2)

6

k k k 
+

3(2 1)(2 2)

6

k k 
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 =
(2 1)(2 2)(2 3)

6

k k k  
   

 =
( 1)( 2)

6

n n n 
   as n = 2k+1 

By (1) and (2) the Theorem is proved. 

Example 7.   Let n  = 5. Then 

5

1 2 3 4 5

1

k

k

T T T T T T


     = 1+3+6+10+15= 35. We also have, 

5(6)(7)
35

6
  and hence 

5

1

5(6)(7)
.

6
k

k

T


  

Theorem 5. For any natural number n, the number 

 1 + 9 + 92 + 93 + ... + 9n is a triangular number.  

Proof:  Let T =1 + 9 + 92 + 93 + ... + 9n .  Then T= 

19 1

8

n 
.  

By Theorem 1, it is suffice to prove that 8T+1 is a perfect square. We will apply the divide and conquer 

method as in Theorem 4. 

(1)    If n is even, say n =2k, then 

8T+1 = 8 (

19 1
) 1

8

n 
  =

19n
=

2 19 k
=    

2
2 2 19 9 3k k ,  which a perfect square.   

(2)   If n is odd, say n= 2k+1, then 

8T+1 = 8 (

19 1
) 1

8

n 
  =

19n
= 

2 29 k
=   

2
19k

,  which a perfect square.   

By (1)and (2), the theorem is proved. 

Theorem 6.   If nT be triangular numbers for 1n  , then we have 

 

1

1

n nT





  = 2 

Proof:  

1

1

n nT





  
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1

1

2

( 1)

1 1
2

1

n

n

n n

n n












 
  

 




 

  = 2(1) =2 

Proposition 2.  The difference of the squares of two consecutive triangular numbers is a cube. 

Proof:   Consider   1nT  =
2

)1( nn 
 and  Tn =

2

)1( nn 
 

          Then, 
2 2

1( ) ( )n nT T   = 

2 2
( 1 ( 1)

2 2

n n n n    
   

   
      

                                = 
4

2 224 nnn 
- 

4

2 234 nnn 
=

4

4 3n
= 

3n  

Example 8.  Let 6 7 and TT  be any two consecutive triangular numbers. Then 

2 2

7 6( ) ( )T T =  
2 228 21 =(28+-21)(28-21)=(49)(7) = 

37 , which is a perfect cube.  

Proposition 3:  T is a triangular is number   9T+1 is a triangular number. 

Proof:  Assume T is a triangular number. 

 Let T =
2

)1( nn
  

   
2

)1(9
9




nn
T   

 1
2

)1(9
19 




nn
T  

  = 


2

)1(9 nn

2

2
  

  =
2

2)1(9 nn
 

  =
2

299 2  nn
  

  =
2

)13)(23(  nn
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2 (2 1)

2

k k 

  =
2

)1( mm
,   where  m = 3n+1.  

Hence, 9T+1 is a triangular number.   

Example 9.  Let   8T  be the triangular number. Then 9 8T +1= 45, which is a triangular number. 

Proposition 4:   n =  
2211 2...222   kkkk

 is a triangular number. 

Proof:      Note that n = 
121221 2.....221(22.....22   kkkkk
) 

 = )12(2 1  kk
  

 =

2

)12(2 kk

 

                           
( 1)

2

m m
 , where m = 2 1k  . 

                             Hence, n is a triangular number 

Example 10. Let k =3. Then n =
3 1 3 42 2 2   = 28, which is a triangular number. 

Proposition 5.   n =  1+2+3+4+…+( 2 1k  ) is a triangular number. 

Proof : Note that n   =  

                                = 
( 1)

2

m m 
,    where  m = 2 1k  . 

         Hence, n is a triangular number 

Example 11.  Let k = 3.  Then 1+2+3+4+5+6+7=28, which is a triangular numbers. 
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