

Original Research Paper

Vol. 04 Issue 06 June - 2021

Manuscript ID: #0431

OUR BRIEF JOURNEY WITH FERMAT NUMBERS

Mulatu Lemma, Agegnehu Atena, Samuel Dolo, Wondimu Tekalign and Tilahun Muche

College of Science and Technology, Department of Mathematics, Savannah State University, USA.

Corresponding author: *Mulatu Lemma
Tel.:+1 Email: lemmam@savannahstate.edu

ABSTRACT

A Fermat number is an integer of the form

$$F_n = 2^{2^n} + 1_{n \ge 0}$$

The Fermat numbers are named after the French mathematician Pierre de Fermat (1601 – 1665) who first studied numbers of such form.

In this paper, we investigated some interesting properties of the Fermat numbers.

The first five Fermat numbers are 1,5,17,257 and 65537.

KEYWORDS

Fermat Numbers

The Main Results

The following two theorems deal with the recursive properties of the Fermat Numbers.

Theorem 1.
$$F_{n+1} = (F_n - 1)^2 + 1$$
 for $n \ge 0$

Proof: $(F_n - 1)^2 = (2^{2^n} + 1 - 1)^2 + 1$
 $= (2^{2^n})^2 + 1$
 $= 2^{2^n} \cdot 2^{2^n} + 1$
 $= 2^{2 \cdot 2^n} + 1$
 $= 2^{2^{n+1}} + 1$
 $= F_{n+1}$

Example 1:

Note that

$$F_{3} = (F_{2} - 1)^{2} + 1$$

$$= (2^{2^{2}} - 1 + 1)^{2} + 1$$

$$= (2^{2^{2}})^{2} + 1$$

$$= 2^{2^{3}} + 1$$

$$= 2^{8} + 1$$

$$= 257$$

$$F_{3} = F_{3} = F_{4} = 2$$

Theorem 2.

$$F_n = F_0 ... F_{n-2} \cdot F_{n-1} + 2_{\text{ for } n \ge 1}$$

Proof: We use induction n

Step 1:
$$n=1$$
 holds as

$$F_0 + 2 = 3 + 2 = 5 = F_1$$

Step 2: Assume the hypothesis is true n = k that is

$$F_0...F_{k-1} + 2 = F_k$$

Step 3: Prove that the hypothesis holds for n = k + 1. We have

$$F_0...F_k + 2 = F_0...F_{k-1} \cdot F_k + 2$$

$$= (F_k - 2) \cdot F_k + 2$$

$$= (2^{2^k} + 1 - 2)(2^{2^k} + 1) + 2$$

$$= (2^{2^k} - 1)(2^{2^k} + 1) + 2$$

$$= 2^{2^{k+1}} - 1 + 2$$

$$= 2^{2^{k+1}} + 1$$

$$= F_{k+1}$$

Example 2: Observe that

$$F_3 = F_0 \cdot F_1 + F_2 + 2$$

$$= 3 \cdot 5 + 17 + 2$$

$$= 255 + 2$$

$$= 257$$

Corollary 1: For $n \ge 1$, we have

$$F_n = 2 \pmod{F_m}_{\text{for all }} m = 0,1,...,n-1$$

Proof: Easily follows by Theorem 2

Corollary 2: For $n \ge 2$, we have the last digit of $F_n = 7$ **Proof:** From Corollary 1, we have

$$F_n = 2 \pmod{5}$$

 $\Rightarrow F_n = 2 \pmod{5}_{\text{as all } F_n \text{ are odd}}$
 $\Rightarrow_{\text{the last digit of } F_n = 7$

Theorem 3. Every F_n is of the form

$$6k-1$$
 for $n \ge 1$

Proof: Note by Theorem 2,

$$F_{n+1} = F_0 \cdot F_1 ... F_n + 2 + 1$$
$$= 3 \cdot F_1 ... F_n + 3$$
$$= 3(F_1 ... F_n + 1)$$

$$F_1...F_n$$
 is odd $\Longrightarrow F_1...F_n + 1$ is even and hence

$$F_{n+1} = 3 \cdot 2k = 6k$$
$$\Rightarrow F_n = 6k - 1$$

Remark 1. The first five Fermat numbers 1,5,17,257 and 65537 are all primes. A question must be raised if all Fermat numbers are primes. But this is not true as shown by the following theorem. We give our own new proof to this theorem.

Theorem 4. The Fermat number $F_5 = 4,294,967,297$ is divisible by 641

Proof: Observe that
$$641 = 5 \cdot 2^7 + 1$$
 and $F_5 = 2^{3^2} + 1$. Now we have $5 \cdot 2^7 \equiv -1 \pmod{641}$

$$\Rightarrow (5 \cdot 2^7)^4 \equiv -1^4 \pmod{641}$$

$$\Rightarrow 5^4 \cdot 2^{28} \equiv 1 \pmod{641}$$

$$\Rightarrow 625 \cdot 2^{28} \equiv 1 \pmod{641}$$

$$\Rightarrow (-16) \cdot 2^{28} \equiv 1 \pmod{641}$$

$$\Rightarrow 16 \cdot 2^{28} \equiv -1 \pmod{641}$$

$$\Rightarrow 2^4 \cdot 2^{28} \equiv -1 \pmod{641}$$

$$\Rightarrow 2^{32} \equiv -1 \pmod{641}$$

$$\Rightarrow 2^{32} + 1 \equiv 0 \pmod{641}$$

$$\Rightarrow$$
 641 | $\left(2^{32} + 1\right)$

$$\Rightarrow$$
 641 | F_5

Theorem 5. The Fermat numbers are relatively prime to each other.

Proof: Let F_m and F_n be two Fermat numbers, where $m > n \ge 0$. Let

$$d = \gcd(F_n, F_m)$$
. Observe that Fermat numbers are odd numbers, $\gcd(F_n, F_m)$ must be

odd. That is d is odd.

Let
$$x = 2^{2^n} k = 2^{m-n}$$
, then

$$\frac{F_m - 2}{F_n} = \frac{\left(2^{2^n}\right)^{m-n} 2 - 1}{2^{2^n} + 1}$$

$$= \frac{x^{k} - 1}{x + 1} = x^{k-1} - x^{k-2} + \dots + 1$$

$$\Rightarrow F_{n}(F_{m} - 2) \Rightarrow d \mid P_{n} \Rightarrow d \mid (F_{m} - 2)$$

$$\Rightarrow d \mid 2 \text{ as } d \mid m \Rightarrow d = 1$$

We state the following Pepin's Test as Theorem 3 without proof and use it.

Theorem 6. Pepin's Test. For $n \ge 1$, the Fermat number $F_n = 2^{2^n} + 1$ is prime $\Leftrightarrow 3^{(F_{n-1})/2} \equiv -1 \mod(F_n)$

Corollary 3. Using Pepin's Test prove that $F_3=257_{
m is\ prime.\ Note\ that}$

Proof

$$3^{(F_{3-1})/2} \equiv 3^{128} = 3^3 (5)^{25}$$

 $\equiv 27(-14)^{25}$
 $\equiv 27 \cdot 14^{24}(-14)$
 $\equiv 27(17)(-14)$
 $\equiv 27 \cdot 19 \equiv 513 \equiv -1 \pmod{257}$
 $\Rightarrow F_3$ Is prime.

Theorem 7. No Fermat number F_n for $n \ge 2$ can be expressed as the sum of two primes.

Proof. We use proof By Contradiction. Assume that there exists $n \ge 2$ such that F_n could be expressed as the sum of two primes. Observe that since F_n is odd, one of the primes must be 2. Then the other prime would equal $F_n - 2 = F_n - 2 = 2^{2^n} - 1 = (2^{2^{n-1}} + 1)(2^{2^{n-1}} - 1)$ which is not a prime.

Acknowledgments

Special Thanks to:

- 1. Dean Mustafa Mohammed
- 2. Dr. Chellu Chetty
- 3. Dr. Jonathan Lambright.

References:

- 1. Burton, D. M. (1998). Elementary number theory. New York City, New York: McGraw-Hill.
- 2. Dodge, C. W. (1975). *Numbers and mathematics*. Boston, Massachusetts: Prindle, Weber & Schmidt Inc..
- 3. Dudley, Underwood (1969). Elementary number theory. San Francisco: W. H. Freeman and Company.
- 4. Jackson, T. H. (1975). Number theory. Boston, Massachusetts: Rouledge& Kegan Paul Ltd..