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ABSTRACT

A Fermat number is an integer of the form
EJ‘!
F =2 +1ns0

The Fermat numbers are named after the French mathematician Pierre de Fermat (1601 — 1665)

who first studied numbers of such form.
In this paper, we investigated some interesting properties of the Fermat numbers.

The first five Fermat numbers are 1,5,17,257 and 65537.
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The Main Results

The following two theorems deal with the recursive properties of the Fermat Numbers.

2
Theorem 1. Fn+1 = (Fn _1) +1 for N 2> 0)
Proof: (Fn —1)2 = (22n +1—1)2 +1
= (22n )2 +1
=27 .27 41
=227 11
=22 +1
= |:n+l
Example 1: Note that
F,=(F, -1 +1
= (222 —1+1)Z +1
= (222 )2 +1
=27 +1
=2°+1
=257
Theorem 2. Fn = Fo---Fn_z : Fn_l +2 forn>1
Proof: We use induction N
Step 1: N=1 nholdsas
F,+2=3+2=5=F
Step 2: Assume the hypothesis is true N = K that is
F..F,+2=F
Step 3: Prove that the hypothesis holds for N = K+1. wehave

F.F+2=F..F_,-F+2
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( k — ) +2

7 +1- 2X22 +1)+2
(2 —1X22 +1)+2
=27 _142

=277 41

=R

Example 2: Observe that
F=FK F+F +2
=3-5+17+2
=255+2
=257
Corollary 1: For N=>1 wehave
F =2(modF, )orasm=01,...,.n—1

Proof: Easily follows by Theorem 2

Corollary 2: For N 2> 2 , We have the last digit of Fn =
Proof: From Corollary 1, we have
F. =2(mod5)

=>F = Z(WDd 5) as all F,, are odd

— the last digitof F, =7

Theorem 3. Every F, is of the form

6k —1forn>1

Proof: Note by Theorem 2,

F.,=F F..F +2+1

=3-F..F, +3
=3(F,...F, +1)

Fl---Fn isodd = Fl---Fn +1 is even and hence
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F,., =3 -2k =6k
= F,=6k-1

Remark 1. The first five Fermat numbers 1,5,17,257 and 65537 are all primes. A question must be raised if
all Fermat numbers are primes. But this is not true as shown by the following theorem. We give our own new
proof to this theorem.

Theorem 4. The Fermat number F5 =4,294,967,297 is divisible by 641
proot: Observe that 641 =527 + 1 ang Fy = 2% +1. yow e have
5.2 =—1(mod 641)
= (5-27) =—1*(mod 641)
= 5%.2% =1(mod 641)
= 625- 2% =1(mod 641)
= (-16)-2%® =1(mod 641)
—16-2% = —1(mod 641)
= 2*.2% = —1(mod 641)
= 2% = —1(mod 641)
= 2% +1=0(mod 641)
= 641|(2% +1)
= 641|F,
Theorem 5. The Fermat numbers are relatively prime to each other.

Proof: Let Fm and Fn be two Fermat numbers, where m>nz= O Let
d = ng (Fn ) Fm ) Observe that Fermat numbers are odd numbers, ng (Fn ) Fm ) must be

odd. That is d is odd.
2" -
Lt X=2° K=2"" then

F-2 () 21

F, 2% 41
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k

X' =1 _ _
2 Co kMt oxk 2441
X+1

=F (F -2)=d|P,=d|(F, -2)
=d |235d |m:>d =1

We state the following Pepin’s Test as Theorem 3 without proof and use it.

Theorem 6. Pepin’s Test. For N =1, the Fermat number F, = 2% +1 is prime

<3 )2 = _1mod (F.)

Corollary 3.Using Pepin’s Test prove that F3 =257 is prime. Note that

proof 3(F3,1 )2 _ 3128 _ 33 (5)25
=27(-14)*
=27-14*(-14)
=27(17)(-14)
=27-19=513=—1(mod 257)
= F, Isprime.

Theorem 7. No Fermat number F, for 7 > 2 can be expressed as the sum of two primes.

Proof .We use proof By Contradiction. Assume that there exists n > 2 such that F, could be expressed as the

sum of two primes. Observe that since F, is odd, one of the primes must be 2. Then the other prime would

equal F,-2=F, -2= 2% —1= (22n_1 +1)(22n_1 —1) which is not a prime.
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