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A B S T R A C T 

A Fermat number is an integer of the form 

 

The Fermat numbers are named after the French mathematician Pierre de Fermat (1601 – 1665) 

who first studied numbers of such form. 

In this paper, we investigated some interesting properties of the Fermat numbers. 

The first five Fermat numbers are 1,5,17,257 and 65537. 
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The Main Results 

The following two theorems deal with the recursive properties of the Fermat Numbers. 
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Example 1: Note that 
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Theorem 2. 2... 120   nnn FFFF for 1n  

 

Proof: We use induction n  

 Step 1: 1n   holds as 

10 5232 FF   

 Step 2: Assume the hypothesis is true kn   that is  

kk FFF  2... 10  

 Step 3: Prove that the hypothesis holds for 1 kn  .   We have 

2...2... 100   kkk FFFFF  
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Example 2:  Observe that 
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Corollary 1: For 1n  ,   we have 

   mn FF mod2 for all 1,...,1,0  nm  

Proof: Easily follows by Theorem 2 

Corollary 2: For 2n ,  we have the last digit of 7nF  

Proof:  From Corollary 1,  we have 

  5mod2nF  

  5mod2 nF as all nF are odd 

  the last digit of 7nF  

 

Theorem 3. Every nF is of the form 

 16 k for 1n  

Proof: Note by Theorem 2, 
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 nFF ...1 is odd 1...1  nFF  is even and hence 
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Remark 1. The first five Fermat numbers 1,5,17,257 and 65537 are all primes. A question must be raised if 

all Fermat numbers are primes. But this is not true as shown by the following theorem. We give our own new 

proof to this theorem. 

 

 Theorem 4.  The Fermat number 5F = 4,294,967,297 is divisible by 641 

Proof: Observe that 125641 7  and 12
23

5 F .  Now we have 
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Theorem 5.  The Fermat numbers are relatively prime to each other. 

Proof:  Let mF   and   nF  be two Fermat numbers, where 0 nm . Let  

 mn FFd ,gcd .  Observe that Fermat numbers are odd numbers,  mn FF ,gcd  must be 

odd. That is d is odd. 
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2|d as 1|  dmd  
We state the following Pepin’s Test as Theorem 3 without proof and use it. 

 

Theorem 6.  Pepin’s Test.  For 1n ,  the Fermat number 122 
n

nF  is prime
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Corollary 3.Using Pepin’s Test prove that 2573 F  is prime.  Note that 

Proof 
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 Theorem 7.   No Fermat number nF for n ≥ 2 can be expressed as the sum of two primes. 

 

Proof .We use proof By Contradiction.  Assume that there exists n ≥ 2 such that nF  could be expressed as the 

sum of two primes.  Observe that since  nF  is odd, one of the primes must be 2. Then the other prime would 

equal nF – 2 = 122 2 
n

nF = ( 12
12 
n

)( 12
12 
n

)   which is not a prime. 
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