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Introduction 

In his 1859 paper on the number of primes less than a given magnitude, bernhard Riemann 

(1826-1866) examined the properties of the function 
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A B S T R A C T 

An explicit identity of sums of powers of complex functions presented via this a closed-form formula of 

Riemann zeta function produced at any given non-zero complex numbers. The closed-form formula 

showed us Riemann zeta function has no unique solution for any given non-zero complex numbers which 

means Riemann zeta function is entirely divergent. Infinitely many zeros of Riemann zeta function 

produced unfortunately those zeros also gives us non-zero values of Riemann zeta function. Among those 

zeros, some of them are zeros of Riemann hypothesis. The present paper also discussed on eta function 

(alternating Riemann zeta function) with exactly the same behavior as Riemann zeta function. 
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For a complex number. This function is analytic for real part of s greater than 1 and is related to the prime 

numbers by the euler product formula 

 

again defined for real part of s greater than one. This function extends to points with real part s greater than 

zero by the formula (among others) 

 

The Riemann Hypothesis 

The zeta function has no zeros in the region where the real part of s is greater than or equal to one. In the 

region with real part of s less than or equal to zero the zeta function has zeros at the negative even integers; 

these are known as the trivial zeros. All remaining zeros lie in the strip where the real part of s is strictly 

between 0 and 1 (the critical strip). It is known that there are infinitely many zeros on the line 1/2+it as t 

ranges over the real numbers. This line in the complex plane is known as the critical line. The Riemann 

Hypothesis (RH) is that all non-trivial zeros of the zeta function lie on the critical line [1],[6],[7]. Let’s say that 

again: 

Riemann Hypothesis: 

All non-trivial zeros of the zeta functions lie on the line 1/2+it as t ranges over the real numbers. 

The Functional Equation 
The functional equation of the zeta function is 

 

From which values of the zeta function at s can be computed from its values at (1-s). Using this equation one 

sees immediately that the zeta function is zero at the negative even integers [3],[5],[11],[12]. 

Many famous mathematicians studied and developed equations to prove Riemann Hypothesis in different 

approach [2],[8],[9]. An analytic continuation of Riemann zeta function developed which agrees for all 

complex numbers [4]. 

The present paper gives us closed-form formula of Riemann zeta function which spits out non-unique solutions 

for each complex numbers excepting zero. 
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2. Four Definitions 

Throughout this paper we will use the following definitions. 

Definition 1. For every k ∈Z+|{1} , a1,a2 ∈R and d1,d2 ∈R|{0}, define the following 

 

 

 

 

 

Definition 2. Define the Riemann zeta function, ζ(s), for all complex numbers, s with real part greater than one by: 

 

Definition 3. Define the eta function(alternating Riemann zeta function), η(s), for all complex numbers, s with real part 

greater than zero by: 

 

Definition 4. Let s be a complex number with real part of s greater than zero. Then we define the gamma function, Γ(s) as 

 

Note that Γ(s + 1) = sΓ(s) with real part of a complex number s greater than zero. 

 

3. Two Theorems 

Theorem 1. [10] For every complex numbers a and d, where d = 06 , then we have 

 

Where 

 

(1) 

(2) 

(3) 

(5) 
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Theorem 2. [10]For every complex numbers a and d, where d = 06 , then we have 

 

 

Where 

 

4. Main Result 

Theorem 3. Define a complex numbers a = a1 +a2i, d = d1 +d2i 6= (0 ,0), s = A1 +iB1 or s = A2 + iB1 and 1 =6

 x ∈R+. If 

 

Then 

Proof 
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⇒eAln(x) cos(B ln(x)) + ieAln(x) sin(B ln(x)) = a1 + (x − 1)d1 + (a2 + (x − 1)d2)i 

⇒eAln(x) cos(B ln(x)) = a1 + (x − 1)d1 (8) 

⇒eAln(x) sin(B ln(x)) = a2 + (x − 1)d2 (9) 

 

Now divide equation (9) by equation (8), then we have 

 

We can let that 
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From equation (8), we have 

 

We can let that 

 

And now from equation (9), we have 

 

We can let that 

 

 

Theorem 4. If s = A1 + B1i or s = A2 + B1i, then for every 1 =6 x ∈R+ 
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or 

 

Proof 

 

Hence 

 

 

 

 

 

 

and 

 

(10) 
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Hence, 

 

 

Theorem 5. If s = A1 + B1i or s = A2 + B1i, then for every x ∈R+ 

x−s 

 

or  

 

proof 

(11) 
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Therefore  

 

And  

 

Hence 

 

 

 

 

 

 

 

 

(12) 

(13) 
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