
http://www.gphjournal.org/index.php/m/                                                                                               

 

© GLOBAL PUBLICATION HOUSE

 

 

 

 

        

 

 

 

 

 

 

 

 

 
 
1. INTRODUCTION
Continued fractions have been extensively studied and there is a large body of 
included as classical results in most undergraduate textbooks like [1, 4, 5] and they continue to be studied a great deal. 
Continued fraction expansions can also be finite or infinite. For example, any rational nu
continued fraction expansion, while an irrational number has an infinite continued fraction expansion [2, 9]. Although our ma
concentration is in the operations of the continued fractions, it is important to look for sim
that the operations of the simple continued fractions follow similar patterns to those of continued fractions under certain 
circumstances [6, 7, and 8]. Therefore it is important to make this comparison. Hence, we sum
for simple continued fractions. The main justification for the paper is the operations of the continued fractions. The additi
and subtraction of two continued fractions.
 
II. PRELIMINARIES 

Definition 2.1: A continued fraction is an expression of the form 

complex, and their numbers can be either finite or infinite. 
�

���
�

���
� 

⋱�
�
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, where �� is an integer, �� , ��

[�� ; �� , �� , … ]� . 
 
Example 2.1 

(a)  3 +
�
�

��

�
�
�

= [3; 4,7]�

�

 .       (b) −7 +
�
�

��

(�), (�) have a finite number of terms, and (�
 
Theorem 2.1: A number is rational if and only if it can be expressed as a finite C.F. [8]. 
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Continued fractions have been extensively studied and there is a large body of research related to them [3]. They are now 
included as classical results in most undergraduate textbooks like [1, 4, 5] and they continue to be studied a great deal. 
Continued fraction expansions can also be finite or infinite. For example, any rational number can be expressed as a finite 
continued fraction expansion, while an irrational number has an infinite continued fraction expansion [2, 9]. Although our ma
concentration is in the operations of the continued fractions, it is important to look for similarities. Previous studies have shown 
that the operations of the simple continued fractions follow similar patterns to those of continued fractions under certain 
circumstances [6, 7, and 8]. Therefore it is important to make this comparison. Hence, we summarize some important results 
for simple continued fractions. The main justification for the paper is the operations of the continued fractions. The additi
and subtraction of two continued fractions. 

n is an expression of the form �� +
��
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⋱   �
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 where ��, ��, ��, … and ��,

complex, and their numbers can be either finite or infinite. In this paper, we consider the continued fractions of the form

� , �� , … , ��  are positive integer and � is a positive non integer. We denote it by 

�
�

�

�
�
�

= [−7; 1,3]�

�

 .      (c) 1 +
�
�

��

�
�

��

�
�
⋯

 = [1; 2,3, … ]�

�

 

(�) has an infinite number of terms. 

A number is rational if and only if it can be expressed as a finite C.F. [8].  
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The continued fractions (C.F.) with positive non integer numerators are considered. The addition and subtraction 
operations of two continued fractions are discovered. Many definitions and examples that we used of these low are 
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Example 2.2:   

(a) 
��

��
= 3 +

�
�

��

��

= 3 +
�
�

��

�
�

��
�

= 3 +
�
�

��

�
�

��

�
�

��
�

= 3 +
�
�

��

�
�

��

�
�

��

�
�
�

= [3,2,4,7,3]�
�� . 

(b) 
��

��
= 2 +

�
�

��

�

= 2 +
�
�

��

�
�
�

= [2 ,1,3]�
�� . 

(c) 
�

�
= 0 +

�

�
�

�

= 0 +
�

�

��

�
�
�

= [0,3,3]�
�� . 

(d)  
�

�
= 0 +

�

�

�
= [0;1]�

�� . 

 

Remark 2.1: To expand a negative rational number −
�

�
(� , � > 0) into C.F we take the greatest integer number �

��

  � 
� for the first term 

of C.F that is, �
��

 �
� = ��

� ,  where −��  
� ≤  −

�

�
 <  −��

� + 1. We write −
�

�
= −��

�  +
�

��

��

 and then we use the same techniques in theorem 

2.1 to get the remaining terms for 
��

��
. That is, if 

��

��
= [��

� , ��
� ⋯ , ��

� ]�. Then 
��

�
= [��

� ; ��
� , ��

� ⋯ , ��
� ]�. [6]. 

 

Example 2.3: −
��

�� 
=  −7 +

�

��
= −7 +

�
�

��

�

 =  −7 +
�
�

��

�
�
�

=  [−7,1,3]�
�� . 

Lemma 2.1:  
 
 
III. ADDITION OPERATION FOR TWO CONTINUED FRACTIONS 

Definition 3.1: The C.F [�� ;�� , �� , … , ��]� can be defined by [��;��, ��, … , ��]� = �� +
� ����(��)

��(��)
 or  [�� ;�� , �� , … , ��]� =

����(��)

��(��)
, 

where ������ = ���(���)�������� + ���������, � = 1,2, … , �, � = 0 , 1 , … , � and ������� = 0, ������ = 1.  

Definition 3.2: Let ��� ;��, … , ���
�
and [��;��, … , ��]� be two C.F. we define addition by  

(1) If  � =  � then [��;��, … , ��]�+[��;��, … , ��]� = [��;��, … , ��]�                              (3.2�) 
where 
�� = �� + �� = ��(��) + ��(��). 

�� = �
����

�����
� = �

��(��)��(��)

��(��)���(��)
�. 

In general 

�� =

⎩
⎪
⎨

⎪
⎧ �

����(��)��(��)����(��)������(��)��(��)�����(��)��(��)�����(��)�

�����(��)��(��)�����(��)��(��)�����(��)���(��)��(��)����(��)
� , � ���

�
�������(��)��(��)�����(��)��(��)�����(��)���(��)��(��)����(��)�

��(��)��(��)����(��) ������(��)��(��)�����(��)��(��)�����(��)
� , � ����

�, 

 for � = 2, … , � . The last term �� of the resulting C.F. is to be expanded again as a C.F. 
(2) If � ≠ � (suppose that � < �) then  
[��;��, … , ��]� + [��;��, … , ��, ����, … , ��]� = [��

� ;��
� , … , ��

� , ����
� , … , ��

� ]�            (3.2b), 
where ��

� = �� for � = 0,1,2, … , �  (�� as we did for case � = �), while ��
� = �� ,��� and 

��,��� =

⎩
⎪
⎨

⎪
⎧ �

����(��)��(��)�������
��������(��)��(��)�����(��)��(��)��������
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�����(��)��(��)�����(��)��(��)��������
�����(��)��(��)�������
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�
�������(��)��(��)�����(��)��(��)��������

�����(��)��(��)�������
���

��(��)��(��)�������
��������(��)��(��)�����(��)��(��)��������

��
� ; � ����

�, 

for � = � + 1, � + 2, ⋯ , �. Also, the last term of the resulting C.F is to be treated as mentioned earlier. 
 
 
Example 3.1: Find [2;1,3]�

�� + [3;1,14]�
��  

Solution: Let [2;1,3]�
�� = [��;��, ��]� and [3;1,14]�

�� = [��;��, ��]�. We get � = � = 2. From definition (3.2a) we get [��;��, ��]� +

[��;��, ��]� = [��;��, ��]�, where �� is the last term and   
�� = �� + �� = 5. 

�� = �
����

�����
� = �

�

�
� = 0. 

�� =
����(������)���(������)�

(������)(������)(�)����(������)���(������)���
=

��

��
      ( to be treated as C. F), 

0 1 1 1 0 1 2 1 1 2[ ; ,..., ,0, ,..., ] [ ; ,..., , , ,..., ]j j n z j j j j n zc c c c c c c c c c c c      
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    = [1;3,1]�
�� . 

Then [2;1,3] �
�� + [3;1,14]�

�� = [5;0,1,3,1]�
�� . 

Example 3.2: Find[2;2]�
�� + [2;9,5.7]�

�� . 

Solution: Let [2;2]�
�� = [��;��]�

��  and  [2;9,5.7]�
��  = [��;��, ��, ��]�

�� , we get � = 1, � = 3 and � < �, from definition (3.2b) we 

have [2;2]�
�� + [2;9,5.7]�

�� = [��;��]�
�� + [��;��, ��, ��]�

�� = [��
� ;��

� , ��
� , ��

� ]�, where ��
�  is last term and  

��
� = �� = �� + �� = 2 + 2 = 4. 

��
� = �� = �

����

�����
� = �

�∙�

���
� = �

��

��
� = 1. 

��
� = ��,� = �

�����(��)��(��)���(��)��(��)������
�����(��)��(��)������

���

��(��)��(��)�����
������(��)��(��)���(��)��(��)�����

���
�  

                = �
���(�)(������)������(�)���(������)(�)�

��(������)(�)��(�)(������)��������
� � = �

����

���
�  = 2. 

��
� = ��,� =

����(��)��(��)�����
������(��)��(��)���(��)��(��)������

���

���(��)��(��)���(��)��(��)������
�����(��)��(��)�����

��
                =

����(��������������)(�)��(�)(��������������)�(������)�����
��

�(�)(��������������)�(������)������
���

�������(��������������)��
� =

��

��
 (to be treated as C. F) 

                 = [2,3,2,2,19,2,4,5,2,3,8,4,4,2,2,2,9,5,7]�
�� . 

Then [2;2]�
�� + [2;9,5,7]�

�� = [4;1,2,2,3,2,2,19,2,4,5,2,3,8,4,4,2,2,2,9,5,7]�
�� . 

 
 
Example 3.3: Find  [4]�

�� + [0;7,5]�
��  

Solution: Let [4]�
�� = [��]� and [0;7,5]�

�� = [��;��, ��]�, we get � =0, � = 2 (� < �) and from definition (3.2b), we have  [4]�
�� +

[0;7,5]�
�� = [��]� + [��;��, ��]�

�� = [��;��, ��]�
�� ,  where 

�� = �� + �� = 4 + 0 = 4. 
Then[4]�

�� + [0;7,5]�
�� = [4;7,5]�

�� . 

IV.  SUBTRACTION OPERATION FOR TWO CONTINUED FRACTIONS 
Definition 4.1: Let [��;��, ⋯ , ��]� be a C.F then we can define additive inverses by −[��;��, ⋯ , ��]� = [��

� ;��
� ]�, where 

 ��
� = −1 − �� = ��. 

��
� =

���(��)

��(��)������(��)
                   (to be treated as C. F. ), 

     = [��;��, ⋯ , ��]�.  
Therefore  −[��;��, ⋯ , ��]� = [��

� ;��
� ]� = [��;��, ⋯ , ��]�. 

Example 4.1: Find −[2;1,3]�
�� . 

Solution: Let [2;1,3]�
�� = [��;��, ��]�, (� = 2) from definition 4.1, we have: [−2;1,3]�

�� = [��
� ;��

� ]�, where 

��
� = −1 − �� = −1 − 2 = −3. 

��
� =

���(��)

��(��)����(��)
 =

��

��
    (to be treated as C. F). 

     = [1;1,1,1,3,2]�
�� . 

Then − [2;1,3]�
�� = [−3;1,1,1,1,3,2]�

��  

Definition 4.2: If [��;��, ⋯ , ��]� and [��;��, ⋯ , ��]� are two C.F then we define subtraction [��;��, ⋯ , ��]� − [��;��, ⋯ , ��]� by the 
addition [��;��, ⋯ , ��]� + [��;��. , ⋯ , ��]� where [��;��, ⋯ , ��]� give by definition 4.1. That is  
 (1) If � = � then  [��;��, ⋯ , ��]� + [��;��, ⋯ , ��]� = [��;��, ⋯ , ��]�                          (4.2a) 
where ��, ��, ⋯ , �� as give in (3.2a) 
(2) If � ≠ � ,(� < �) then  
[��;��, ⋯ , ��, ����, ⋯ , ��]� + [��;��, ⋯ , ��]� = [��

� ;��
� , ⋯ , ��

�, ����
� , ⋯ , ��

� ]�                   (4.2b)                   
where �� 

� , ��
� , ⋯ , ��

�  as give in (3.2b) . 
Example 4.2: Find [1;1,2]�

�� − [0;1,2]�
��  

Solution: (1) first we find −[0;1,2]�
�� .Let [0;1,2]�

�� = [��;��, ��]�
�� , (� = 2). From definition 4.1, we have 

−[0;1,2]�
�� = [��

� , ��
� ]�

�� , where 

 ��
� = −1 − �� = −1 − 0 = −1 

��
� =

���(��)

��(��) − ���(��)
=

�(���� + �)

(���� + �) − �(��)
=

55

3
  = [18;5]�

�� . 

Then −[0;1,2]�
�� = [−1;18,5]�

�� . 

(2) To find [1;1,2]�
�� + [−1;18,5]�

�� , we let [1;1,2]�
�� = [��;��, ��]� and [−1,18,5]�

�� = [��;��, ��]�, (� = � = 2) from (3.2a), we 

have  
[1;1,2]�

�� + [−1;18,5]�
�� = [��;��, ��]� + [��;��, ��]� =  [��;��, ��]�, where �� is the last term and 

�� = �� + �� = 1 + (−1) = 0, 

�� = �
����

�����
� = �

�∙��

����
� = �

��

��
� = 0, 

3
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�� =
����(������)���(������)�

(������)(������)����(������)���(������)���
=

����

����
 = 1, 

Then  [1;1,2]�
�� + [−1;18,5]�

�� = [0;0,1]�
�� = 1  (by lemma 2.1) 

 
V. CONCLUSION 
This paper is a sequel to our previous work in which we found the operations of the simple continued fractions. In the previous work, 
[8] we discovered the definitions of addition, subtractions, multiplication and division operations of the simple continued fractions. In 
this paper we defined the addition and subtractions of continued fractions with positive non Integer numerators. The study of the 
continued fractions with positive non Integer numerators is the first step to understand the continued fractions with polynomial 
numerators. 
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