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Abstract 

This paper investigated boundedness and global asymptotic stability of solutions of a 

class of certain second order nonlinear differential equation with damping using the 

Lyapunov second order and eigenvalue approach. Through the exploits of Schwartz 

inequality and assumptions on the inhomogeneous part, solutions of the Duffing 

equation were bounded and the equilibrium point was global asymptotically stable. 

Response to damping revealed that the damping effect was not negligible thereby 

reducing oscillations. Application of our results can be seen in the construction of door 

net where the trajectory returns to equilibrium as fast as possible. Furthermore, 

Mathcad software was used to analyze the behavior of the system which extends some 

results in literature.    
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1. Introduction 

Duffing equation is a second order differential equation that is widely used in physics, 

economics, engineering, and many other phenomena. The study is significant because of 

the physical application of the results. It is significant to the Physicist who uses it to 

study propagation of wave in mobile phones, radios, televisions [1]. The signal 

processor will find its significance in modeling of the nonlinear spring mass system [2], 

modeling of the ultra wide band (UWB) radio systems for detecting high speed wireless 

[3], fussy modeling and the adaptive control of uncertain chaotic system. 

It is also significant to the Engineers who find its applicability in energy harvesting [4], 

crash analysis [5], modeling conservative double well oscillator which occur in 

magneto-elastic mechanical system [6] and prediction of emission characteristics of 

sawdust particle [18]. It is also significant to the medical and life scientist who will find 

it applicable in the modeling of the brain [8] and prediction of the heart  beats (pulse). 

The environmentalist will find it applicable in predicting earthquake occurrences [9] 

and other natural disasters such as tsunamis and heat waves. It is used to model plant 

systems, where the effect of nonlinear stiffness on resonant behavior of plants is 

described by the Duffing oscillators with hardening non-linearization. Its important can 

be seen in signal processing [10] and prediction of weather condition. In Biology, [11] 

opined that common feature of oscillating biological systems are feedback loops, 

negative feedback and genetic oscillation. [12] found that the low-frequency property of 

a capillary oscillation play a vital role in mass and energy transmission in blood flow, 

permeability and cell growth.  The low frequency is also widely used in energy 

harvesting device [13, 14]. 

Stability is one of the qualitative properties of a differential equations that is an 

important factor in nonlinear analysis. For nonlinear differential equation of the Duffing 

type, the stability results are obtained by observing the behavior of the trajectory 

around the equilibrium point. For instance, see [15, 16, 17] and their references therein. 

For stable equilibrium point, the behavior of the trajectory is predicted around the 

equilibrium point after a little displacement from the origin. For asymptotic stable 

equilibrium point, the behavior of the trajectory is predicted close to the equilibrium 

point while for global asymptotic stable equilibrium point, the behavior of the trajectory 

is predicted as a little displacement from the origin to infinity. However, these results 

are necessary for explaining the importance of stability of Duffing equation such 

oscillation of rigid pendulum using moderately large amplitude motion [18], vibration 

of buckled beam [19], choice of hard/soft spring in the mechanism of shock absorbers 

[20] and the inherent pull-in instability micro-electromechanical systems (MEMS)s 

which can be overcome by the fractal vibration theory [21, 22]. 

In this paper, we consider the Duffing equation of the form   
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   𝑥′′ + 𝑐𝑥′ + 𝑔(𝑡 , 𝑥) =  𝜆𝑝(𝑡)                                                              (1) 

where 𝑔(𝑡 , 𝑥) =  𝜆𝑥 +  𝛽𝑥3, 𝑐  is the damping coefficient, 𝑔 ∶ ℝ ⟶ ℝ  is sufficiently 

smooth,  𝑔(− ∞) =   lim 𝑔(𝑥)
𝑥→− ∞

  and   𝑔(+ ∞) =   lim 𝑔(𝑥)
𝑥→ ∞

  satisfies the inequality  

𝑔(− ∞)  <  𝑔(𝑥)  <  𝑔(+ ∞)       for all      𝑥 ∈ ℝ                                   (2)       

The function  𝑝 ∈ 𝐿∞(ℝ)  is bounded, aperiodic and has a well-defined mean value  𝑝̅ ∈

ℝ 

defined by 

𝑝̅ =  lim
𝑟 → +∞

(
1

𝜏
) ∫ 𝑝(𝑡) 𝑑𝑡

𝑎 + 𝜏

𝑎
    (uniformly in   𝑎 ∈ ℝ)               (3) 

In [23],  

𝑝̅  =  lim
𝑟 → +∞

(
1

𝑇
) ∫ 𝑝(𝑡) 𝑑𝑡

𝑇

𝑎
         was used to prove that Landesman-Lazer type condition  

    𝑔(− ∞)  <  𝑔(𝑥) <  𝑔(+ ∞)                                                             (4) 

Equation (4) was necessary and sufficient for existence and boundedness of the 

solution in  

𝑥 ∈ 𝑊2 ,∞(ℝ). Every solution of equation (1) is bounded in  𝑥 ∈ 𝑊2 ,∞(𝑡0 , ∞ ) when 

equation (3) is satisfied. In our case, we observed that the existence of total derivative 

of the Lyapunov function is necessary and sufficient to confirm boundedness of the 

equation (1) in   𝑊2 ,2(ℝ). Related results have been previously obtained by [24, 25, 26, 

27, 28, 29]. It is also worthy to observe that the Landesman-Lazer condition are 

necessary but not sufficient to guarantee global asymptotic stability. For instance, if  𝑔  

holds for equation (2) and nonincreasing for some  𝑝  satisfying equation (4), then 

equation (1) is not globally asymptotically stable. Related problem have been studied by 

[30, 31] with resounding results. For instance, [30, 31] achieved local stability by 

assuming that 𝑝 is periodic of a fixed period. In our own case, Lyapunov boundedness 

theorem will be used to overcome all these obstacles and achieve global asymptotic 

stability. To achieve global asymptotic stability,  [32] considered the equation 

𝑥′′ + 𝑐𝑥′ + 𝑔(𝑥) =  𝑝(𝑡)                                                                      (5) 

 

where  𝑝 ∈ 𝐿1(ℝ) and the parameters are not restricted in such case. In this work, we assumed 

that  𝑝 ∈ 𝐿2(ℝ) and restrictions are imposed on the damping coefficient to investigate damping 

effect on the global asymptotic stability of equation (1). In [33], global asymptotic stability of a 

second order differential equation was achieved under the assumptions placed on the damping 

coefficient and the nonlinear part. Some methods have been employed by few researchers to 
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study boundedness and global asymptotic stability of nonlinear differential equation. Control 

theory approach was used by [34] to establish boundedness of the equation. 

 

𝑥′′ + 𝑐𝑥′ + 𝛼(𝑡)𝑦 =  0                                                                        (6) 

Where 

𝛼 ∈ 𝐿2(ℝ+)      𝑎 ≤   𝛼(𝑡)  ≤  𝑏           𝑎 . 𝑒𝑡 ∈ ℝ+ 

 

While comparison technique was employed by [23] to show that the solution of the differential 

equation of the form (1) can be compared directly once there is restriction on a finite interval. 

Control theory approach is limited because it places so much importance on the interval relative 

to the parameters. The limitation of the comparison technique is that it is impossible to 

compare different or completely identical qualitative properties. However, Lyapunov second 

method and its theorem will be employed in this paper to study boundedness and global 

asymptotic stability of solutions of Duffing equation. Lyapunov second method has advantage 

over these methods because it is general and appropriate for dealing with uncertain systems 

and nonlinear limit-varying parameters.  

The objective of this paper therefore, is to investigate boundedness and global asymptotic 

stability of solutions of Duffing equation. We further analyze different type of damping for the 

Duffing equation and examine the effects of damping on the system. 

Motivation of this work are the works in [20] and [35]. This article is organized in this format: 

the next section gives the basic preliminary surrounding the subject while section three is 

dedicated to known results in the theory. The numerical simulations features in section four and 

the last section is conclusion. 

 

2. Preliminary Results 

Consider the function  𝑓 ∶ ℝ ⟶ ℝ  which is continuous in a given domain. 

Definition 2.1 Bounded Function 

𝑓  is said to be bounded on the domain of definition D(𝑓)  if there exist 𝑀 > 0 ∶  |𝑓(𝑥)| ≤ 𝑀 for 

all 𝑥 element of the domain of  𝑓. 

In other words,  𝑓 is bounded if  ∃ 𝑚  𝑎𝑛𝑑 𝑀 ∈  ℝ such that  𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for all  𝑥 ∈  𝐷(𝑓). 

These numbers  𝑚 𝑎𝑛𝑑 𝑀 are respectively lower and upper bounds. 

 

Definition 2.2 Lyapunov Stability 

Consider the system of first order differential equation  

  𝑋̇ = 𝐹(𝑡 , 𝑋),           𝑋(𝑡0) =  𝑋0                                           (7)    

where  𝑋(𝑡)  ∈  𝐷(𝐹) ⊆ ℝ𝛼   is the system state vector,  𝐷  is an open set with origin, and     

𝑓 ∶  𝐷 ⟶ ℝ𝛼  is continuous in 𝐷. Assuming F has an equilibrium at  𝑋𝑒 so that F(𝑥) =  0, 

then system (6) is said to be stable if for any  ε >  0,   ∃  𝛿 =  𝛿(ε , 𝑡0) > 0 such that  

‖X(0) − 𝑋𝑒‖ <  ε ,     ∀  𝑡 ≤ 0 . 

If  δ is not depending on  t0 over entire time interval i. e. δ =  δ(ε)  then the solution of  

(1) is said to be uniformly stable. 
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Definition 2.3 Asymptotic Stability 

Solution of  (1) is asymptotically stable if the system is Lyapunov stable and   𝛿 =

 𝛿( 𝑡0)  >  0 and  lim
𝑡 → ∞

 ‖X(t) −  𝑋𝑒‖ = 0 

Definition 2.4 Global Asymptotic Stability 

Solution of  equation (1) is globally asymptotically stable, if there exists  𝛿 =  𝛿( 𝑡0)  >

 0 such that 

‖X(0) −  𝑋𝑒‖ <  𝛿  ⟹   ‖X(t) −  𝑋𝑒‖ = 0                     as         𝑡 → ∞ 

 

Furthermore, if the convergence in definition (2.4) does not depend on the initial state  X(t0)  

 

over the entire special domain, then the solution of the system is globally asymptotically stable 

Definition 2.5  Let  𝑉 ∶  ℝ𝛼 ⟶ ℝ  be continuously differentiable with V(0) = 0. Then  V is 

1. Positive definite  if                𝑉(𝑋) > 0                    ∀  𝑋 ≠ 0  𝑎𝑛𝑑  V(0) = 0  

2. Negative definite             if   𝑉(𝑋) < 0                    ∀  𝑋 ≠ 0  𝑎𝑛𝑑  V(0) = 0 

3. Positive Semi-definite    if   𝑉(𝑋) ≥ 0                    and vanish for some  𝑋 ≠ 0 

4. Negative Semi-definite  if   𝑉(𝑋) ≤ 0                    and vanish for some  𝑋 ≠ 0 

 

Definition 2.6  Lyapunov Function 

A scalar function  𝑉 ∶  ℝ𝛼 ⟶ ℝ  is called Lyapunov function if it is positive definite (Semi-

definite) and its derivative with respect to trajectories of a given system is negative definite 

(Semi-definite)  

 

Definition 2.7  Damping 

This is the resistance offered to the oscillation.  

 

Theorem 2.1  Consider the differential equation  

  𝑋̇ = 𝐹(𝑡 , 𝑋),           𝑋(𝑡0) =  𝑋0                                                (8) 

where  𝐹 ∶  ℝ𝛼 ⟶ ℝ𝛼  and  𝑋̇ =  
𝑑𝑋

𝑑𝑡
 , If  𝑉 ∶  ℝ𝛼 ⟶ ℝ is a continuously differentiable and satisfies 

the following conditions  

1.  𝑉(𝑋) is positive definite. 

2. The time derivative of  𝑉 (that is  𝑉̇),  is negative semi-definite 

Then the equilibrium point is stable in the sense of Lyapunov. 

 

Theorem 2.2  Let 𝑉 ∶  ℝ𝛼 ⟶ ℝ is a continuously differentiable and satisfies the following 

conditions  

1.  𝑉(𝑋) is positive definite. 

2. The time derivative of  𝑉 (that is  𝑉̇),  is negative semi-definite 

Then the equilibrium point is asymptotically stable in the sense of Lyapunov. 

 

Theorem 2.3  Let 𝑉 be a Lyapunov function, which satisfies the following  

1. All sub-level sets of   𝑉  are bounded 

2. 𝑉̇  ≤ 0       ∀  𝑋 

Then  ∃  𝐾 such that  ‖X(𝑡)‖  ≤ 𝐾 ,     ∀ 𝑡 
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Theorem 2.4  Suppose that there is  𝑉  for  𝑋 = 0  and  𝑉 is radically unbounded unbounded that 

is  ‖𝑥‖ → ∞ ⟹  𝑉(𝑥) →  ∞ , then the equilibrium point is globally asymptotically stable. 

 

3. Main Results 

In this section, we present the main tool for establishing global asymptotic stability and 

boundedness of solutions of Duffing equation. 

 

3.1 Stability of Solutions 

Consider the general Duffing equation  

 𝑥̈ + 𝑐𝑥̇ + 𝑔(𝑡 , 𝑥) =  𝜆𝑝(𝑡)                                                           (9) 

when            𝑔(𝑡 , 𝑥) =  𝜆𝑥 + 𝛽𝑥3 

equation  (9)  becomes 

   𝑥̈ + 𝑐𝑥̇ + 𝜆𝑥 + 𝛽𝑥3 =  𝜆𝑝(𝑡)                                                      (10) 

 

Our main results are given as below: 

Theorem 3.1 Let 𝛽 and 𝜆 be positive constants, then all solutions of the corresponding 

homogeneous equation to equation (10)  for 𝑝(𝑡) = 0 is asymptotically stable. 

 

Theorem 3.2 Subject to the conditions of theorem (3.1) , the solution of equation (10)  are 

bounded and in fact uniformly bounded. 

 

Theorem 3.3  Let  𝑔 = ∞  then solutions of equation (10) is globally asymptotically stable.  

 

Theorem 3.4 In addition to the conditions of theorem (3.1) , suppose that  𝑝(𝑡 , 𝑥 , 𝑥̇) = 𝑝(𝑡) 

and  
|𝑝(𝑡)| ≤ 𝑀 ,  for all  𝑡 ≤ 0 , then there exists a constant  𝜎 ,  (0 < 𝜎 < ∞) depending only on the 

constants  𝛽  and  𝜆  such that every solution of  (10) satisfies  

   𝑥2(𝑡) + 𝑥̇(𝑡) ≤ (𝑒 −𝜎𝑡 (𝐴1 + 𝐴2 ∫ |𝑝(𝜏)|
𝑡

𝑡0
𝑒1 2𝜎𝑡⁄ 𝑑𝜏)2 )          (11) 

for all 𝑡 ≥ 𝑡0, where the constant 𝐴1 > 0 depends on 𝛽 and 𝜆 as well as on 𝑡0 , 𝑥(𝑡0) ,  𝑥̇(𝑡0);  and 

the constant  𝐴2 > 0 depends on  𝛽  and  𝜆 . 

Equation  (10) can be put in its equivalent system as  𝑥̇ = 𝑦 

  𝑦̇ = −𝑐𝑦 − 𝜆𝑥 − 𝛽𝑥3 +  𝜆𝑝(𝑡)                                                           (12) 

To prove the theorems, we make use of the scalar function  𝑉 = 𝑉(𝑥 , 𝑦)  defined as  

      2𝑉 =
𝛿

𝛼𝑐
{[𝑐2 + 𝑐𝜆(𝛼 + 1) + 𝛼𝑎𝛽]𝑥2 + 2𝑐𝑥𝑦 + (𝛼 + 1)𝑦2}         (13) 

where 𝑎 , 𝑐 , 𝛼 , 𝛽 and 𝛿  are all positive with  |𝑥2| ≤ 𝑎  and 𝛼 = 𝜆 + 𝛼𝛽. To prove the theorem, 

we need to establish that the function  𝑉 is indeed a Lyapunov function. 

Clearly,  𝑉(0 , 0) = 0. Rearranging equation (13) we have  

  2𝑉 =
𝜎

𝛼𝑐
([ 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)]𝑥2 + 𝑐𝜆𝑥2 + 2𝑐𝑥𝑦 + 𝛼𝑦2)                   (14) 

On further simplification, we have  

2𝑉 =
𝜎

𝛼𝑐
( [ 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)]𝑥2 + 𝑐𝜆𝑥2 + 𝑐𝑦(𝑥 + 𝑦)2 + (𝛼 + 1 −

𝑐

𝜆
)𝑦2) 

2𝑉 =
𝜎

𝛼𝑐
( [ 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)]𝑥2 + 𝑐𝜆𝑥2 + 𝑐𝑦(𝑥 + 𝑦)2 + (

𝜆(𝛼 + 1) − 𝑐

𝜆
)𝑦2) 

Clearly,  
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2𝑉 ≥
𝜎

𝛼𝑐
([ 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)]𝑥2 + (

𝜆(𝛼+1)−𝑐

𝜆
)𝑦2)                               (15) 

and using the Schwartz inequality  

|𝑥𝑦| ≤  
1

2
(𝑥2 + 𝑦2) , we have that  

2𝑉 ≤
𝛿

𝛼𝑐
([𝑐2 + 𝑐𝜆(𝛼 + 1) + 𝛼𝑎𝛽 + 𝑐]𝑥2 + (𝛼 + 1 + 𝑐)𝑦2)     (16)    

from equation (15) and (16) we have for 𝐾1 and  𝐾2 

   𝐾1(𝑥2 + 𝑦2) ≤ 𝑉(𝑥 , 𝑦) ≤ 𝐾2(𝑥2 + 𝑦2)                                              (17) 

Where 

𝐾1 =
𝜎

𝛼𝑐
 x  { [ 𝑐2 + 𝛼(𝑐𝜆 + 𝑎𝛽)] , ( 

𝜆(𝛼 + 1) − 𝑐

𝜆
 ) } 

and 

𝐾2 =
𝜎

𝛼𝑐
 ×  𝑚𝑎𝑥  { [ 𝑐2 + 𝑐𝜆(𝛼 + 1) + 𝛼𝑎𝛽 + 𝑐 ] , ( 

𝜆(𝛼 + 1) − 𝑐

𝜆
 )  } 

Inequality  (17) shows the positivity of the function 𝑉. Differentiating  (13) along the solution 

trajectories of system  (12) , we have  

    𝑉̇ =
𝜎

𝛼𝑐
( [ 𝑐2 + 𝑐𝜆(𝛼 + 1) + 𝛼𝑎𝛽]𝑥𝑥̇ + 𝑐(𝑥𝑦̇ + 𝑥̇𝑦) + (𝛼 + 1)𝑦𝑦̇)                    (18) 

𝑉̇ =
𝜎

𝛼𝑐
( [ 𝑐2 + 𝑐𝜆(𝛼 + 1) + 𝛼𝑎𝛽]𝑥𝑦 + 𝑐𝑦2 + [ 𝑐𝑥 + (𝛼 + 1)𝑦] (−𝑐𝑦 − 𝜆𝑥 − 𝛽𝑥3 + 𝜆𝑝(𝑡 )))  (19) 

Simplifying using the conditions on the theorem, we have that when  𝑝(𝑡 )  ≡ 0 

                                   𝑉̇ = −𝛿(𝑥2 + 𝑦2) ≤ 0                                                                (20)  

Inequality  (20) shows that the time derivative of  𝑉 is negative semi-definite. 

When  𝑝(𝑡 ) ≠ 0  we have the time derivative of the scalar function as  

  𝑉̇ = −𝛿(𝑥2 + 𝑦2)  + 𝐾3(𝑥2 + 𝑦2)1 2⁄ |𝑝(𝑡)|                                                                (21) 

where  𝐾3 = √2 × 𝜆 × min(𝑐 ,  (𝛼 + 1) ). 

 

Proof of theorem (𝟑. 𝟏) 

Proof: 

From the Lyapunov stability theorem, the condition for  𝑉 are satisfied by the Lyapunov 

candidate in equation  (13) , we have  

                                                    (𝑥2 + 𝑦2)  ≤  
𝑉(𝑥 ,𝑦)

𝐾1
                                                          (22)   

Using the above inequality in  (21) we have that  

                                     𝑉̇ ≤ −
𝛿

𝐾1
(𝑉 − 𝐾3𝑉1 2⁄ )|𝑝(𝑡)|) ≤ 0                                               (23) 

Equation  (23) can simply be put as  

𝑉̇ ≤ 𝐾4𝑉1 2⁄ (|𝑝(𝑡)| −
𝑉1 2⁄

𝐾3
) 

where  𝐾4 =  𝐾3 × 
𝛿

𝐾1
   when   𝑝(𝑡) ≤

𝑉1 2⁄

𝐾3
   we have 

                                                  𝑉̇ ≤ 0                                                                                         (24) 

Hence, the conclusion of theorem  (3.1)                                                     

 

Proof of theorem (𝟑. 𝟐): 

Now we consider  

                               𝑉 =
𝜎

2𝛼𝑐
( [ 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)]𝑥2 + ( 

𝜆(𝛼+1)−𝑐

𝜆
 )𝑦2)                                

                             𝑉 =
𝜎

2𝛼𝑐
( 𝑐2 + 𝛼(𝜆𝑐 + 𝑎𝛽)𝑥2 + ∫ 𝑘𝑔(𝑥)

𝑦

0
𝑑𝑥                (25) 
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where  

𝐾 =
𝜎

2𝛼𝑐
 ( 

𝜆(𝛼 + 1) − 𝑐

𝜆
 ) 

and  

𝑔(𝑥) = 2𝑥 

Assume  𝑔 satisfies  ∫ 𝑘𝑔(𝑥)
𝑦

0
𝑑𝑥 → ∞  as  ‖x‖ → ∞ then equation  (25) is radically unbounded 

and  𝑉̇ ≤  0  in  ℝ𝛼. Hence, the solution is globally asymptotic stable. 

Proof 

However, if   𝑝(𝑡) ≥  
𝑉1 2⁄

𝐾3
 ,  by rewriting inequality  (23) 

𝑉̇ ≤ −2𝐾5𝑉 + 𝐾6𝑉1 2⁄  |𝑝| 

we have  

𝑉̇ + 𝐾5𝑉 ≤ −𝐾5𝑉 + 𝐾6𝑉1 2⁄  |𝑝| 

𝑉̇ + 𝐾5𝑉 ≤ 𝐾6𝑉1 2⁄  (|𝑝| − 𝐾7𝑉1 2⁄ ) 

where   𝐾5 =
𝛿

2𝐾1
 ,   𝐾6 =

𝐾3

𝐾1
   and   𝐾7 =

𝐾5

𝐾6
 

Now we are considering the case when  𝑝(𝑡) ≥  𝐾7𝑉1 2⁄  , we have 

𝑉̇ + 𝐾5𝑉 ≤ 𝐾6𝑉1 2⁄  |𝑝| 

which implies 

                                    𝑉−1 2⁄ 𝑉̇ + 𝐾5𝑉1 2⁄ ≤ 𝐾6|𝑝|                                                                      (26) 

Multiplying both sides of the inequality  (26)  by  𝑒
1

2
 𝐾5𝑡 gives  

                             𝑒
1

2
 𝐾5𝑡( 𝑉−1 2⁄ 𝑉̇ + 𝐾5𝑉1 2 ⁄ ) ≤ 𝑒

1

2
 𝐾5𝑡|𝑝|                                                       (27) 

That is  

                                            2
𝑑

𝑑𝑡
( 𝑉

1

2 𝑒
1

2
 𝐾5𝑡)  ≤ 𝑒

1

2
 𝐾5𝑡|𝑝|                                                            (28) 

Integrating both sides of  (28) from  𝑡0  to  𝑡 gives  

                                                [ 𝑉
1

2 𝑒
1

2
 𝐾5𝑡  ]𝑡0

𝑡  ≤ ∫ 𝑒
1

2
 𝐾5𝑡|𝑝(𝜏)𝑑𝜏|

𝑡

𝑡0
                                            (29) 

which implies that 

                            𝑉
1

2(𝑡)𝑒
1

2
 𝐾5𝑡 ≤ 𝑉

1

2(𝑡0)𝑒
1

2
 𝐾5𝑡0 +

1

2
𝐾6 ∫ |𝑝(𝜏)|𝑒

1

2
 𝐾5𝜏𝑑𝜏

𝑡

𝑡0
                               (30) 

or 

                    𝑉
1

2(𝑡) ≤ 𝑒− 
1

2
 𝐾5𝑡 { 𝑉

1

2(𝑡0)𝑒
1

2
 𝐾5𝑡0 +

1

2
𝐾6 ∫ |𝑝(𝜏)|𝑒

1

2
 𝐾5𝜏𝑑𝜏

𝑡

𝑡0
 }                               (31) 

On utilizing inequalities  (15)  and  (17)  we have    

𝐾1( 𝑥2(𝑡) + 𝑥̇2(𝑡)) ≤ 𝑒− 𝐾5𝑡( (𝐾2( 𝑥2(𝑡0) + 𝑥̇2(𝑡0) ) )
1

2𝑒
1

2
 𝐾5𝑡0 +

1

2
𝐾6 ∫ |𝑝(𝜏)|𝑒

1

2
 𝐾5𝜏𝑑𝜏

𝑡

𝑡0
)2    (32) 

for all  𝑡 ≥ 𝑡0,  thus 

( 𝑥2(𝑡) + 𝑥̇2(𝑡)) ≤
1

𝐾1
 { 𝑒− 𝐾5𝑡( (𝐾2( 𝑥2(𝑡0) + 𝑥̇2(𝑡0) ) )

1

2𝑒
1

2
 𝐾5𝑡0 +

1

2
𝐾6 ∫ |𝑝(𝜏)|𝑒

1

2
 𝐾5𝜏𝑑𝜏

𝑡

𝑡0

)2 } 

≤ 𝑒− 𝐾5𝑡( 𝐴1 + 𝐴2 ∫ |𝑝(𝜏)|𝑒
1

2
 𝐾5𝜏𝑑𝜏

𝑡

𝑡0
)2                                                             (33) 

 

where 𝐴1 and 𝐴2 are constants depending on  𝐾1 , 𝐾2 , 𝐾3 , .  .  .  , 𝐾7  and  ( 𝑥2(𝑡) + 𝑥̇2(𝑡)). 

By substituting  𝐾5 = 𝜎  in the inequality (33)  we have 

 𝑥2(𝑡) + 𝑥̇2(𝑡) ≤ 𝑒− 𝜎𝑡( 𝐴1 + 𝐴2 ∫ |𝑝(𝜏)|𝑒
1

2
𝜎𝜏𝑑𝜏

𝑡

𝑡0
)2                                                             (34) 

This shows that the solutions of the equation are bounded 

 

8



ON BOUNDEDNESS AND GLOBAL ASYMPTOTIC STABILITY OF SOLUTIONS OF DUFFING 

EQUATION 

Volume 7 Issue No 11 (2024) Access: https://gphjournal.org/index.php/m 

 

3.2 Response to damping 

The auxiliary equation of equation  (10)  when  𝑝(𝑡) = 0 is given by 

                                                                  𝑠2 + 𝑐𝑠 + 𝜇 = 0                                                            (35) 

Where  𝑠  represents the root of the equation and   The characteristic root of equation  (35) is 

given by  

                                                        𝑠 =  
−𝑐 ± √𝑐2−4𝜇

2
                                                                   (36) 

For different form of damping, the following cases with respect to the sign of the discriminate 

are considered. 

 

Case 1: If  𝑐2 < 4𝜇 then 𝑐2 − 4𝜇 < 0 shows that that the damping constant is small relative to  𝜇. 

The term under the square root is negative and characteristic root become a complex root with 

general solution  

                                                 𝑠 = 𝐶1𝑒
−𝑐𝑡

2 cos(𝑟𝑡) + 𝐶2𝑒
−𝑐𝑡

2 sin(𝑟𝑡)                                              (37)    

For arbitrary 𝐶1 , 𝐶2 and 𝑠 =
√𝑐2−4𝜇

2
 is called the damped angular frequency of the system. 

cos(𝑟𝑡) shows oscillation and  𝑒
−𝑐𝑡

2  with negative exponent gives the decaying amplitude. As 𝑡 →

∞, the exponential goes asymptotically to zero. When 𝑐 = 0, the response is a sinusoid. When 

the damping constant is small, the system is expected to still oscillate but with nonincreasing 

amplitude as its energy is converted to heat. Over time, the system should come to rest at at 

equilibrium. Since the root have nonzero imaginary part, the system is under-damped. 

 

Case 2: If  𝑐2 > 4𝜇 then  𝑐2 − 4𝜇 > 0 show that  𝑐 is large relative to 𝜇. 𝑐2 − 4𝜇  is positive and  

                                               𝑠1 =  
−𝑐+ √𝑐2−4𝜇

2
                                                                   (38) 

                                               𝑠2 =  
−𝑐− √𝑐2−4𝜇

2
                                                                   (39) 

with general solution  

                                           𝑠 = 𝐶3𝑒𝑠1 + 𝐶4𝑒𝑠1                                                                   (40) 

for arbitrary  𝐶3 and  𝐶4. When the damping constant is large, frictional force is so great that the 

system cannot oscillate. This is a typical behavior of an unforced overdamped harmonic 

oscillator which does not oscillate. Since the characteristic root are real and distinct, the system 

is overdamped.   

 

Case 3: If  𝑐2 − 4𝜇 then  𝑐2 − 4𝜇 = 0 shows that the damping constant is between the 

overdamped and underdamped. The characteristic polynomial has a repeated root with general 

solution 

                                                                   𝑒
−𝑐𝑡

2 (𝐶5 + 𝐶6𝑡).                                                                (41) 

for arbitrary  𝐶5 and  𝐶6. This type of damping is called critical damping which give fastest 

return of the system to its equilibrium position. When  𝑐 = 0, the remaining term is equal to 

zero and the response is not sinusoid. 

 

 

 

 

 

Conclusion 
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Here in this study, we explore the Boundedness and global asymptotic stability of solutions of 

Diffung equations with damping. The usage of an appropriate Lyapunov second method 

alongside the eigenvalue approach and the introduction of some necessary parameters such as 

𝐾𝑛 : 𝑛 = 1 , 2 , 3 ,   .  .  .  , 7 including  𝑝(𝜏) helped in no small measure, in achieving the desired 

result. Application of Schartz inequality was also significantly utilized. 

The results show that under specific conditions on damping, nonlinear and force terms, the 

solutions remain remain bounded and converge to an equilibrium or periodic orbit. 

 

One of the gains obtained in the method used in the study is the ability to get the result through 

the Lapunov method without solving the differential equation fully. The realization of the 

results also show sharper and more as well as more general conditions for boundedness and 

stability than the previous results in the existing literature.  

Furthermore, numerical solution is also achievable and serves as an excellent alternative to the 

theoretical or analytic aspect. In Mechanical engineering for example, this result provide much 

Mathematical support for the long-term behavior of vibrating mechanical systems, in order to 

guarantee that there would be no unbounded or chaotic motion under normal operating 

conditions. Essentially, the established conditions for global asymptotic stability serve as tools 

to ensure reliability and safety. 

 

Besides, the results also lay emphasis on the robustness across various forms of Duffing 

equation for example forced, unforced, with different nonlinear situations. It also contributes to 

the understanding of the nonlinear dynamics and differential equations, more elaborately.  
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