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Abstract

Group algebras of non-abelian groups of order 16 are represented in terms of block
circulant matrices. These are nine groups listed according to the property of semidirect
and the numbers of generators involved.
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D) Preliminaries

Let G be a group, assume that H is a normal subgroup of G, K is a subgroup of G, H N K = {1},
and G = HK. Suppose that K acts on H by automorphisms of H, then there exists a
homomorphism @: K = Aut(H). Assume the action is by conjugation, then for k € K and h € H
we have kh = @(k)(h) = khk~1. G is an internal semidirect product of H and K by @, it is
denoted by G = H x4 K[5].

We have nine non-abelian groups of order 16[3], which are as follows
)G =(a,p:a®=p*=1,a* =B Ba=a 1p)

ii) G, = (a,B:a® = p% =1, fa = a3p)

iii) G3 = (a,B:a® = p% = 1, fa = a®p)

iv) G, = Dg = (a, B:a® = p? =1,pa = a™1p)

V)G = (G X )X Cy =(a,f:a* = B* =1,Ba =a™'p7")

Vi)Gs-C, ¥ C, = {a,f:a* = p* =1,Fa = a™1p)
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Vii)G; = Dy X G, ={a, B, y:a* =p? =y?> = 1,Ba = a ™ 'B,ya = ay,yB = By)
Vlll) GS = Q4 X CZ = (arﬁry: a4 = ﬁ4 = y2 = 1ra2 = ﬁz,ﬁa = a‘lﬁ,ya = ay')/ﬁ = BY>
ix) Go = (a,B,y:a*=p*=y*=1Pa=af,ya=ay,yp = a*By)

We apply the results in [1] and [2] to these groups except Gg, since it is not a semi direct
product. It may be done by direct method.

Let F be a field. A ring A with unity is an algebra over F (F —algebra) if A is a vector space over
F and the following compatibility condition holds (sa).b = s(a.b) = a.(sb) forany s € F. A is
also called associative algebra (over F). The dimension of the algebra A is the dimension of A as
a vector space over F.

Theorem 1[4]

Let A be an —dimensional algebra over a field F. Then there is a one to one algebra
homomorphism from 4 into M,, (F), the algebra of n —matrices over F.

LetG ={g1 = 1, 9>, ..., gn} be a finite group of order n and F a field. Define FG = {a,g; +
ayg, + -+ apngn: a; € F}. FG is n —dimensional vector space over F with basis G.
Multiplication of G can be extended linearly to FG. Thus, FG becomes an algebra over F of
dimension n. FG is called group algebra. The following identifications should be realized:

i)0rgs =0pg =0forany g € G
ii) 1,9 = grg = g forany g € G.In particular 1,g; = 15 =1
arpl; = agc foranya € G

A circulant matrix M on parameters ag, a4, ..., a,_1 is defined as follows:

ap Aap-1"" I

al ao e az

M(ao, aq, ...,an_l) = . .
An-1 An-1 Ao

This matrix may be denoted in terms of its columns by [col(ay)|col(a,_1)] ... |col(ay)]. M is said
to be circulant block matrix if it is if the form M (M;, M,, ..., M,,). i.e, it is circulant blockwise on
the blocks My, M5, ..., M,,.

Thus,
M, My M,
wo| Mz Mie M
Mn Mr;—l M;
II) Main Results

Theorem 2) [1]

Let F be afield and G = {(a: a™ = 1) a cyclic group of order n. Then any element a;1 + a,a +
++ an,a™ ! of FG can be represented with respect to the order basis.
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a; ap ..a;
n_l . . az a1 ---a3
{1,a,...,a™ '} by the circulant matrix M(ay,a,, ...,a,) =| . . o
A, QAp_q-. Q4

Corollary 5) [1]

Let F be afield and D,, = (a, B: a™ = ? = 1, fa = a1 B) the dihedral group. Matrix
representation of the general element Y.~ a;a’ + X' b;a'f in FD,, is given by
M(M(ay, ay, .., an_1), MP (bg, by ..., by_1)).

The general element of the group algebra FG is given by w = wy + wy + -+ + w,_q, where w; =
(api + ag;a + -+ ap_;@® B fori = 0,1, ..., m — 1. We take the following natural basis of the
group algebra FG.

B={l,a,..,a" 5 B,ap,..,a®1p; .., pm L ap™ 1, .., a® 1™ 1} This can be written as
follows: B = {1,a,...,a™ 1} u{l,q,..,a™}pu..u{l,qa,..,a® 1}p™ 1 Briefly B = B, U
By U ..UBp,_;,where B;_{1,q, ..., a™ 1B/ . Let Tz: FG —» M, (F) be the linear transformation of
our matrix representation relative to the basis B. Let TBJ. = Tg| Bj- By theorem 2 we have the

following

Lemma 6) [1]

Tp, (wo) = M(a()()r QA10s s an—l,O)-
Lemma 7) [1]

Tg, (w;) is obtained by columns interchange of M(aOi, Aqjy ey Ay 1,i) according to the elements

i _ i
aqt' aqt+r e, aqt+(n r ]
Theorem 8 [1]

The matrix representation of w = wy + wy + --- + wy,_4 in FG relative to the basis B = By U
B; U ...UB,,_4 is given by

[ Tg,(Wo) T, (Wm—1)... Tp _ (w1) ]
Ty (w) = i Tp, §W1) T, (V‘./o) o T, (Wz) i
lTBo Win—1) Tp, (Win—2) Tp,,_, (WO)J
Note that if the order of the basis elements is changed, we obtain a different matrix of

representation. The new matrix is obtained by suitable interchanging of the columns of the

matrix M(ag, ay, ..., Qp_1)-

For more complicated finite groups we use the circulant block matrices to do the required
representations.

Now, let G be an internal semidirect product of H and a cyclic group K = {a) by @. Then the
matrix representation [w] of the general element w in FG is given as follows:
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G = HxgyK,®:K - Aut(H) is a homomorphism, @(y)(h) = yhy 1. Suppose that H =

{hy,hy, .., b L K = Cply) = {1,7, ...,y™ 1} then the general element w in FG isw = a;h;1 +
azhy 1+ + aphnl+ aniihyy + angohoy + -+ aonhpy + Gpniihiy? + o+ azphpy? + - +
amnhnym_l-

Now we can write w as:
wW=w;+wy + -+ wy
Where
w; = ah1+azh, 1+ -+ a,h,1

Wy = Apyrhiy + apyohoy + -+ azphyy

Wm = a(m—l)(n+1)hlym_1 + -+ amnhnym_1

The matrix representation [w] of w is [w] = M([Wl], w,1Y, ..., [Wm]Vm_l), wherey: H - H is

the automorphism y! = @(y)(h) = y'hy " and [w;] =
[col(yi(hl)) |c0l (yi(hz))| ... |col (yi(hn))].

Theorem 9) [2]

The matrix representation [w] of the general element w in FG is

[wi]  [wa)™ [w2]" ]
oy = |l Dl [wm]yzi
L wnl™™ ™ Iwal |

IIT) Applications
)G, = (Co{a) X Co{B)) x Culy) ={a, B:a* = B* = 1,pa = a™'p71)
— {1' a, (XZ, (XS,ﬂ, (Xﬁ, aZB' 0(33,32, (Xﬂz, aZBZ’ QBﬁZ;BB; (ZB3, a233’ (Z3ﬂ3}

w=a;1+ a,a+ aza? + a,a® + agf + agaf + a;a’f + agadf + asf? + agaf? + aj a?p?

+ a3 B% + ai3B3 + aygafd + ajsa?p3 + agadpi.
G = (Cx{a) X Co(B)) » C4ly); @: Culy) = Aut(Cr{a) x C{B))
wo = a;1 + aya + aza? + aa’,
w; = asf + agaf + a;a?f + agadp,
wy = agf? + ajoaf® + aja’B? + aa’p?,

W3 = 511333 + 5114“33 + 5115“2,33 + a16a3,33-
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[w,
[w,1# [wol [W3]33[W2]ﬁ
[Wz]ﬁ2 [wy 1P (wol [ws]
(w38 [w, 1% [wy 18 [wo

a1040304;
a,a,a,0as3
[(wol =

Wol [w31°[w,]F° [w ]ﬁ]l
|
|

|

B
]

3020104
a,asza,aq

G = (C{a) X Co{B)) » Culy).
@: C4(y) = Aut(C,{(a) X C,(B))is a homomorphism.

p(PD) =p1p1 =1

p(B)(a) = pap™t = a’p?

p(B)(a?) = fa’p~! = a®p?

p(P)(a®) = fa®p™! = ap?

[w1] = [col(1)|col(a)|col(a?)| col(a?)],
[w11# = [col(1)|col(a?B?)|col(a?B?)] col(af?)].
p(BH(M) =p*1p7%=1

() (@) = p*af? =«

(B (a?) = p*a’p~* = a?

(A (a®) = p?a’p™ = a®

[w,] = [col(1)]col(a)|col(a®)] col(a?)],
p(BHM) =p%1p7 =1

p(B*)(a) = BPaf™® = a’p?
p(B*)(a?) = Pa’p™> = a®p?

(B (a®) = p*a®p™> = ap?

[ws] = [col(1)]col(a)|col(a®)] col(a?)],
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3
[Ws]ﬁ =
a,130¢070ag
[w ]ﬁs a14A70g0s5
3 A150g0a50g
Q16050607

(41 Q4 A3 (z:01306 A7 Qg
Az A1 G4 A3:014 A7 Ag Ag
a3z Az A1 Q4:01504g A5 Qg
Ay Az Az Aq :016 A5 Ag A7

(5 A14015016: A1 A4 A3 A3
g A15A16A13: A2 A1 A4 A3
a7 A16A13014: A3 A A1 Ay
(g A13014015: A4 A3 Ay Qg

13 4 A7 Qg
Q14 A7 Qg A5
Q15 dg Qs Qg
la,6 a5 ag a;

a9 A12A11010:
10 A9 A12411:
11010 Q9 A12:
A12011010 A9 :

s A14A15A16:
Qg A15A16A13:
a7 A16A13A14:
g A13A140A15:

109 A12011A10:
(10 Qg A12017:
111010 Ag A12:

[col(1)|col(a®B?)|col(a?B?)|col(aBf?)].

Qg A12011A10:
{10 A9 A120Q11:
{11010 A9 A12:
1d120110Q10 A9

:d13 g A7 dg:
(14 A7 Ag Qs
{d15dg Ag g
{416 A5 Ag A7

a; a4 Az az
az a; a4 Az
az Az QA1 Q4
as az dz a;

s A14A15016:
g A15A16A13:
a7 A16A13014:

1ag A13014045

:d10 A9 A12A11
(11010 Ag A1
1120110410 A9

Qs A14A15A16]7
g A15A160A13
a7 Q16013014

Qg A12011Q10

iA120110Q10 A9 : Ag A13A14015:

(13 Ag
(014 A7
{015 Ag
{016 As

a; Qg
a a;
as a;
a, as

as
as
as
Qe

as
ay
a;
a

as
as
Qe
as

a
as
Qay
a |

i1)Gs = Dyla) x C(B) =(a,B,y:a* = B> =y* =1L, Pa = a 'B,ya = ay.yB = By)

={1,a,a% a3 B,aB,a’p,a’B,y, ay, a’y, ay, By, aBy, a*By, a*By}

w=a;1+ a,a+ aza® + asad + agf + agaf + a;a’f + agadf + agy + apay + a .’y

+ a0y + az By + agafy + a;sa’By + a6 Py.

TBO (Wo) = M(al, a,,as, a4) =

TBO (Wl) = Mﬁ(a5, a6, a7, ag) =

[a,04030,
A0a1A403
a30a,a104
[A4030A201

[asaga;ag
aeA70g0s5
a7agds0e

[AgdsdeQy
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Tp, (W) = M(as, ay9, a11,a12) =

Tg,(W3) = MF(ay3, a14, a5, a16) =

Tp,(Wo) = M(ay,az a3,a,4) =

Tp, (w1) = MP(as, a6 a5, ag) =

Tp, (wy) = M(aq, a1, a1, a12) =

Tp, (ws) = MF (13,14, A15,a16) =

(wl=M (M (M(ap ay, a3, ay), MF (as,aq, ay, as)) M (M(a9. 10, A11,A12), MF (a13,a14, Ay, a16))>

a1 Aq4 Az dy;

s de A7 Ag:
g a7 Ag As :
a; ag as e ;
g ds de A7 :

A9 A12011010:
Q10 A9 A12017:
a11010 Ag A12:
A12011010 A9 ;

A13014015016:
A14015016013:
A15016A13014}
LA16013014015;

[ Qg Q12011010
Q10 Ag A12011
A11Q10 g A1
[A12011010 Q9 |

[A13014A15016]
A14A15016013
A15A16013014

[ Q16413014015 ]

[A1040305]
Ap;010403
A30;0104
[A4030,01 |

[Asag;ag]
Agd7Ag0A5
a70gAas0e
[Agds5060A7 ]

Qg Q1204110410

Q10 Ag A12011
A11Q10 Qg A1
A12011A10 A9

A130140Q15016
A14015016013
A15016A13014
A16413014015

as ag a7 ag

:dg A7 A4g Ag
:a7 Ag 4s Ag
:dg A5 4g A7

a; g az a;
az a; a4 az
az a; Aa; Q4
as az dz; a;

A13014015016:
A14Q15016013:
A15016A13014:
A16A130140415:

Q9 A12011010:
Q10 Ag Aq12017:
A11Q10 Ag A12:
A12011010 A9 ;

iiGg = (o, B,y:a* = B2 =y? = 1,Ba = af,ya

:09a12011010:
{010 A9 A12011:
(011010 A9 A12:
(012011010 A9 ;

1013014015016:
1014015016013:
1015016013014
1016013014015:

a; a4 az Az
Az A1 A4 A3
az Az 4 A4
as az az 4as ;

as e a7 ag
g a7 Ag Qs ;
a7 ag Aas Qg ;
g As Ag A7

1Gq A4 A3 Ay

A13A14015016]7]
A14Q15016013
A15016A13014
A16A13014015

a9 120411410
Q10 Ag Q12011
a11Q10 A9 A12
A12011Q10 Ag

as e a7 ag
e A7 Ag As
az ag Aas Ag
ag as ae a7

a; a; a, as
az d; a; au

a, az a; a .

= ay.yB = a*By)
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The general element is

w=a;1+aa+ aza?+ a,a®+asf + agaf + a;a’p + aga3p + agy + ajpay

+ a;1a%y + a3y + ag3By + ajaPy + ajsay + aea>py.

-,
a;
as
Qs

as
Qe
as
as

Qs
a;
a;
as

as
as
Qe
az

as
Qs
a;
a,

az
as
as
Qe

a:
as:
Ay
a :

Qe :
az:
ag:
as :

as
Qe
az
as

a;
a,
as
Qs

as
as
Qe
az

Qs
a;
a,
as

as
as
as
Qe

as
ay
a;
a;

Qe
as
as
as

a;
as
Ay
a;

:09 A12011010:
{010 A9 A12011:
{0110Q10 A9 A132:
{012011010 A9}

(013016015014
1014013016015}
:A15014013016:
1A16A15014013:

QA150140130A167
A16A15014013
A13A16015014
A140Q13016015
a11Q10 Qg A12
A12011Q10 Ag
Qa9 12011010
Q10 A9 A12011

Qg A120110Q10:
A10 A9 A12011:
a11410 g A12:
A124110A10 Ao :

a13016A15014}
A14413016015:
A15014013016}
LA16015014013:

A15014013016}
A16015014013}
A13A16A15014:
A14413016015:
A11Q10 Ag A12}
A12411010 A9 :

Qg A12011410:
A10 A9 A12011:

a;
a,
as
as

as
Qe
a
as

Ay
a;
a,
as

as
as
Qe
a

as
Ay
a;
a;

a
as
as
Qe

a:
as:
Ay :
a :

e

as
Qe
a
as

a4y
az:
Qg :
as :

a
as
as

as
as
Qe
a

as
a;
a
as

as
as
as
Qe

as
Ay
a;
a

Qe
as
as
as

a
as
Ay

a |
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