

Representation of group algebra of 16 order non-abelian groups

By:

Nabila M. Bennour & Ebtisam Nafia Ahmouda

Abstract

Group algebras of non-abelian groups of order 16 are represented in terms of block circulant matrices. These are nine groups listed according to the property of semidirect and the numbers of generators involved.

Keywords:

Circulant Matrix, Group Algebra, Semidirect Product, Non-abelian Group.

How to cite: M. Bennour, N., & Nafia Ahmouda, E. (2025). Representation of group algebra of 16 order non-abelian groups. *GPH-International Journal of Mathematics*, 8(7), 119-126. https://doi.org/10.5281/zenodo.16788827

I) Preliminaries

Let G be a group, assume that H is a normal subgroup of G, K is a subgroup of G, $H \cap K = \{1\}$, and G = HK. Suppose that K acts on H by automorphisms of H, then there exists a homomorphism $\emptyset: K \to Aut(H)$. Assume the action is by conjugation, then for $k \in K$ and $h \in H$ we have $kh = \emptyset(k)(h) = khk^{-1}$. G is an internal semidirect product of H and K by \emptyset , it is denoted by $G = H \rtimes_{\emptyset} K[5]$.

We have nine non-abelian groups of order 16[3], which are as follows

i)
$$G_1=\langle \alpha,\beta : \alpha^8=\beta^4=1, \alpha^4=\beta^2, \beta\alpha=\alpha^{-1}\beta\rangle$$

ii)
$$G_2 = \langle \alpha, \beta : \alpha^8 = \beta^2 = 1, \beta \alpha = \alpha^3 \beta \rangle$$

iii)
$$G_3 = \langle \alpha, \beta : \alpha^8 = \beta^2 = 1, \beta \alpha = \alpha^5 \beta \rangle$$

iv)
$$G_4 = D_8 = \langle \alpha, \beta : \alpha^8 = \beta^2 = 1, \beta \alpha = \alpha^{-1} \beta \rangle$$

v)
$$G_6 = (C_2 \times C_2) \times C_4 = \langle \alpha, \beta : \alpha^4 = \beta^4 = 1, \beta \alpha = \alpha^{-1} \beta^{-1} \rangle$$

$$\mathrm{vi})G_{5=}C_4\rtimes C_4=\langle\alpha,\beta:\alpha^4=\beta^4=1,\beta\alpha=\alpha^{-1}\beta\rangle$$

This work is licensed under Creative Commons Attribution 4.0 License.

vii)
$$G_7 = D_4 \times C_2 = \langle \alpha, \beta, \gamma : \alpha^4 = \beta^2 = \gamma^2 = 1, \beta \alpha = \alpha^{-1}\beta, \gamma \alpha = \alpha \gamma, \gamma \beta = \beta \gamma \rangle$$

viii) $G_8 = Q_4 \times C_2 = \langle \alpha, \beta, \gamma : \alpha^4 = \beta^4 = \gamma^2 = 1, \alpha^2 = \beta^2, \beta \alpha = \alpha^{-1}\beta, \gamma \alpha = \alpha \gamma, \gamma \beta = \beta \gamma \rangle$
ix) $G_9 = \langle \alpha, \beta, \gamma : \alpha^4 = \beta^2 = \gamma^2 = 1, \beta \alpha = \alpha \beta, \gamma \alpha = \alpha \gamma, \gamma \beta = \alpha^2 \beta \gamma \rangle$

We apply the results in [1] and [2] to these groups except G_9 , since it is not a semi direct product. It may be done by direct method.

Let F be a field. A ring A with unity is an algebra over F (F —algebra) if A is a vector space over F and the following compatibility condition holds (sa). b = s(a.b) = a. (sb) for any $s \in F$. A is also called associative algebra (over F). The dimension of the algebra A is the dimension of A as a vector space over F.

Theorem 1[4]

Let A be a n —dimensional algebra over a field F. Then there is a one to one algebra homomorphism from A into $M_n(F)$, the algebra of n —matrices over F.

Let $G = \{g_1 = 1, g_2, ..., g_n\}$ be a finite group of order n and F a field. Define $FG = \{a_1g_1 + a_2g_2 + \cdots + a_ng_n : a_i \in F\}$. FG is n—dimensional vector space over F with basis G. Multiplication of G can be extended linearly to FG. Thus, FG becomes an algebra over F of dimension n. FG is called group algebra. The following identifications should be realized:

i)
$$0_F g_G = 0_{FG} = 0$$
 for any $g \in G$

ii)
$$1_F g_G = g_{FG} = g$$
 for any $g \in G$. In particular $1_F g_G = 1_{FG} = 1$

$$a_F 1_G = a_{FG}$$
 for any $a \in G$

A circulant matrix M on parameters $a_0, a_1, ..., a_{n-1}$ is defined as follows:

$$M(a_0, a_1, \dots, a_{n-1}) = \begin{bmatrix} a_0 & a_{n-1} \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1} & a_0 \end{bmatrix}$$

This matrix may be denoted in terms of its columns by $[col(a_0)|col(a_{n-1})|...|col(a_0)]$. M is said to be circulant block matrix if it is if the form $M(M_1, M_2, ..., M_n)$. i.e, it is circulant blockwise on the blocks $M_1, M_2, ..., M_n$.

Thus,

$$M = \begin{bmatrix} M_1 & M_n \cdots & M_2 \\ M_2 & M_1 \cdots & M_3 \\ \vdots & \vdots & \vdots \\ M_n & M_{n-1} & M_1 \end{bmatrix}$$

II) Main Results

Theorem 2) [1]

Let F be a field and $G = \langle \alpha : \alpha^n = 1 \rangle$ a cyclic group of order n. Then any element $a_1 1 + a_2 \alpha + \cdots + a_n \alpha^{n-1}$ of FG can be represented with respect to the order basis.

$$\{1,\alpha,...,\alpha^{n-1}\} \text{ by the circulant matrix } M(a_1,a_2,...,a_n) = \begin{bmatrix} a_1 & a_n & ...a_2 \\ a_2 & a_1 & ...a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_{n-1}... & a_1 \end{bmatrix}.$$

Corollary 5) [1]

Let F be a field and $D_n = \langle \alpha, \beta : \alpha^n = \beta^2 = 1, \beta \alpha = \alpha^{n-1} \beta \rangle$ the dihedral group. Matrix representation of the general element $\sum_{i=0}^{n-1} a_i \alpha^i + \sum_{i=0}^{n-1} b_i \alpha^i \beta$ in FD_n is given by $M(M(a_0, a_1, ..., a_{n-1}), M^{\beta}(b_0, b_1, ..., b_{n-1}))$.

The general element of the group algebra FG is given by $w = w_0 + w_1 + \cdots + w_{m-1}$, where $w_i = (a_{0i} + a_{1i}\alpha + \cdots + a_{n-1i}\alpha^{n-1})\beta^i$ for i = 0, 1, ..., m-1. We take the following natural basis of the group algebra FG.

 $B=\{1,\alpha,\dots,\alpha^{n-1};\beta,\alpha\beta,\dots,\alpha^{n-1}\beta;\dots,\beta^{m-1},\alpha\beta^{m-1},\dots,\alpha^{n-1}\beta^{m-1}\}$. This can be written as follows: $B=\{1,\alpha,\dots,\alpha^{n-1}\}\beta^0\cup\{1,\alpha,\dots,\alpha^{n-1}\}\beta\cup\dots\cup\{1,\alpha,\dots,\alpha^{n-1}\}\beta^{m-1}$. Briefly $B=B_0\cup B_1\cup\dots\cup B_{m-1}$, where $B_j=\{1,\alpha,\dots,\alpha^{n-1}\}\beta^j$. Let $T_B\colon FG\to M_n(F)$ be the linear transformation of our matrix representation relative to the basis B. Let $T_{B_j}=T_B|_{B_j}$. By theorem 2 we have the following

Lemma 6) [1]

$$T_{B_0}(w_0) = M(a_{00}, a_{10}, \dots, a_{n-1,0}).$$

Lemma 7) [1]

 $T_{B_j}(w_i)$ is obtained by columns interchange of $M(a_{0i}, a_{1i}, \dots, a_{n-1,i})$ according to the elements $\alpha^{qt}, \alpha^{qt+r^i}, \dots, \alpha^{qt+(n-1)r^i}$.

Theorem 8 [1]

The matrix representation of $w=w_0+w_1+\cdots+w_{m-1}$ in FG relative to the basis $B=B_0\cup B_1\cup ...\cup B_{m-1}$ is given by

$$T_B(w) = \begin{bmatrix} T_{B_0}(w_0) & T_{B_1}(w_{m-1}) \dots & T_{B_{m-1}}(w_1) \\ T_{B_0}(w_1) & T_{B_1}(w_0) & \dots & T_{B_{m-1}}(w_2) \\ \vdots & & \vdots & \dots & \vdots \\ T_{B_0}(w_{m-1}) & T_{B_1}(w_{m-2}) \dots & T_{B_{m-1}}(w_0) \end{bmatrix}$$

Note that if the order of the basis elements is changed, we obtain a different matrix of representation. The new matrix is obtained by suitable interchanging of the columns of the matrix $M(a_0, a_1, ..., a_{n-1})$.

For more complicated finite groups we use the circulant block matrices to do the required representations.

Now, let G be an internal semidirect product of H and a cyclic group $K = \langle \alpha \rangle$ by \emptyset . Then the matrix representation [w] of the general element w in FG is given as follows:

 $G=H\rtimes_{\emptyset}K,\emptyset$: $K\to Aut(H)$ is a homomorphism, $\emptyset(\gamma)(h)=\gamma h\gamma^{-1}$. Suppose that $H=\{h_1,h_2,\ldots,h_n\}, K=C_m\langle\gamma\rangle=\{1,\gamma,\ldots,\gamma^{m-1}\}$ then the general element w in FG is $w=a_1h_11+a_2h_21+\cdots+a_nh_n1+a_{n+1}h_1\gamma+a_{n+2}h_2\gamma+\cdots+a_{2n}h_n\gamma+a_{2n+1}h_1\gamma^2+\cdots+a_{3n}h_n\gamma^2+\cdots+a_{mn}h_n\gamma^{m-1}$.

Now we can write w as:

$$w = w_1 + w_2 + \dots + w_m$$

Where

$$w_1 = a_1 h_1 1 + a_2 h_2 1 + \dots + a_n h_n 1$$

$$w_2 = a_{n+1} h_1 \gamma + a_{n+2} h_2 \gamma + \dots + a_{2n} h_n \gamma$$

$$\vdots$$

$$w_m = a_{(m-1)(n+1)} h_1 \gamma^{m-1} + \dots + a_{mn} h_n \gamma^{m-1}$$

The matrix representation [w] of w is $[w] = M([w_1], [w_2]^{\gamma}, ..., [w_m]^{\gamma^{m-1}})$, where $\gamma^i : H \to H$ is the automorphism $\gamma^i = \emptyset(\gamma)(h) = \gamma^i h \gamma^{-i}$ and $[w_i] = \left[col(\gamma^i(h_1)) \left| col(\gamma^i(h_2)) \right| ... \left| col(\gamma^i(h_n)) \right| \right]$.

Theorem 9) [2]

The matrix representation [w] of the general element w in FG is

$$[w] = \begin{bmatrix} [w_1] & [w_m]^{\gamma^{m-1}} & \dots & [w_2]^{\gamma} \\ [w_2]^{\gamma} & [w_1] & \dots & [w_m]^{\gamma^2} \\ \vdots & \vdots & \vdots & \vdots \\ [w_m]^{\gamma^{m-1}} & [w_m]^{\gamma^{m-2}} [w_1] \end{bmatrix}$$

III) Applications

$$\begin{split} \mathbf{i})G_7 &= (C_2\langle\alpha\rangle \times C_2\langle\beta\rangle) \rtimes C_4\langle\gamma\rangle = \langle\alpha,\beta:\alpha^4 = \beta^4 = 1,\beta\alpha = \alpha^{-1}\beta^{-1}\rangle \\ &= \{1,\alpha,\alpha^2,\alpha^3,\beta,\alpha\beta,\alpha^2\beta,\alpha^3\beta,\beta^2,\alpha\beta^2,\alpha^2\beta^2,\alpha^3\beta^2,\beta^3,\alpha\beta^3,\alpha^2\beta^3,\alpha^3\beta^3\} \\ w &= a_11 + a_2\alpha + a_3\alpha^2 + a_4\alpha^3 + a_5\beta + a_6\alpha\beta + a_7\alpha^2\beta + a_8\alpha^3\beta + a_9\beta^2 + a_{10}\alpha\beta^2 + a_{11}\alpha^2\beta^2 \\ &\qquad \qquad + a_{12}\alpha^3\beta^2 + a_{13}\beta^3 + a_{14}\alpha\beta^3 + a_{15}\alpha^2\beta^3 + a_{16}\alpha^3\beta^3. \end{split}$$

$$G &= (C_2\langle\alpha\rangle \times C_2\langle\beta\rangle) \rtimes C_4\langle\gamma\rangle; \varphi: C_4\langle\gamma\rangle \to \operatorname{Aut}(C_2\langle\alpha\rangle \times C_2\langle\beta\rangle) \\ w_0 &= a_11 + a_2\alpha + a_3\alpha^2 + a_4\alpha^3, \\ w_1 &= a_5\beta + a_6\alpha\beta + a_7\alpha^2\beta + a_8\alpha^3\beta, \\ w_2 &= a_9\beta^2 + a_{10}\alpha\beta^2 + a_{11}\alpha^2\beta^2 + a_{12}\alpha^3\beta^2, \\ w_3 &= a_{13}\beta^3 + a_{14}\alpha\beta^3 + a_{15}\alpha^2\beta^3 + a_{16}\alpha^3\beta^3. \end{split}$$

Representation of group algebra of 16 order non-abelian groups

$$[w] = \begin{bmatrix} [w_0] & [w_3]^{\beta^3} [w_2]^{\beta^2} & [w_1]^{\beta} \\ [w_1]^{\beta} & [w_0] & [w_3]^{\beta^3} [w_2]^{\beta^2} \\ [w_2]^{\beta^2} & [w_1]^{\beta} & [w_0] & [w_3]^{\beta^3} \\ [w_3]^{\beta^3} & [w_2]^{\beta^2} & [w_1]^{\beta} & [w_0] \end{bmatrix}$$

$$[w_0] = \begin{bmatrix} a_1 a_4 a_3 a_2 \\ a_2 a_1 a_4 a_3 \\ a_3 a_2 a_1 a_4 \\ a_4 a_3 a_2 a_1 \end{bmatrix}$$

$$G = (C_2 \langle \alpha \rangle \times C_2 \langle \beta \rangle) \rtimes_{\omega} C_4 \langle \gamma \rangle.$$

 $\varphi: C_4\langle \gamma \rangle \to \operatorname{Aut}(C_2\langle \alpha \rangle \times C_2\langle \beta \rangle)$ is a homomorphism.

$$\varphi(\beta)(1) = \beta 1 \beta^{-1} = 1$$

$$\varphi(\beta)(\alpha) = \beta \alpha \beta^{-1} = \alpha^3 \beta^2$$

$$\varphi(\beta)(\alpha^2) = \beta \alpha^2 \beta^{-1} = \alpha^2 \beta^2$$

$$\varphi(\beta)(\alpha^3) = \beta \alpha^3 \beta^{-1} = \alpha \beta^2$$

$$[w_1] = [\operatorname{col}(1)|\operatorname{col}(\alpha)|\operatorname{col}(\alpha^2)|\operatorname{col}(\alpha^3)],$$

$$[w_1]^{\beta} = [\operatorname{col}(1)|\operatorname{col}(\alpha^3\beta^2)|\operatorname{col}(\alpha^2\beta^2)|\operatorname{col}(\alpha\beta^2)].$$

$$\varphi(\beta^2)(1) = \beta^2 1 \beta^{-2} = 1$$

$$\varphi(\beta^2)(\alpha) = \beta^2 \alpha \beta^{-2} = \alpha$$

$$\varphi(\beta^2)(\alpha^2) = \beta^2 \alpha^2 \beta^{-2} = \alpha^2$$

$$\varphi(\beta^2)(\alpha^3) = \beta^2 \alpha^3 \beta^{-2} = \alpha^3$$

$$[w_2] = [\operatorname{col}(1)|\operatorname{col}(\alpha)|\operatorname{col}(\alpha^2)|\operatorname{col}(\alpha^3)],$$

$$\varphi(\beta^3)(1)=\beta^31\beta^{-3}=1$$

$$\varphi(\beta^3)(\alpha) = \beta^3 \alpha \beta^{-3} = \alpha^3 \beta^2$$

$$\varphi(\beta^3)(\alpha^2) = \beta^3 \alpha^2 \beta^{-3} = \alpha^2 \beta^2$$

$$\varphi(\beta^3)(\alpha^3) = \beta^3 \alpha^3 \beta^{-3} = \alpha \beta^2$$

$$[w_3] = [\operatorname{col}(1)|\operatorname{col}(\alpha)|\operatorname{col}(\alpha^2)|\operatorname{col}(\alpha^3)],$$

$$[w_3]^{\beta^3} = [col(1)|col(\alpha^3\beta^2)|col(\alpha^2\beta^2)|col(\alpha\beta^2)].$$

$$[w_3]^{\beta^3} = \begin{bmatrix} a_{13}a_6a_7a_8\\ a_{14}a_7a_8a_5\\ a_{15}a_8a_5a_6\\ a_{16}a_5a_6a_7 \end{bmatrix}$$

$$[w] = \begin{bmatrix} [w_0] & [w_3]^{\beta^3} [w_2]^{\beta^2} & [w_1]^{\beta} \\ [w_1]^{\beta} & [w_0] & [w_3]^{\beta^3} [w_2]^{\beta^2} \\ [w_2]^{\beta^2} & [w_1]^{\beta} & [w_0] & [w_3]^{\beta^3} \\ [w_3]^{\beta^3} [w_2]^{\beta^2} & [w_1]^{\beta} & [w_0] \end{bmatrix}$$

 $a_1 \ a_4 \ a_3 \ a_2 \ \vdots \ a_{13} \ a_6 \ a_7 \ a_8 \ \vdots \ a_9 \ a_{12} \ a_{11} \ a_{10} \ \vdots \ a_5 \ a_{14} \ a_{15} \ a_{16} \ a_{10} \ a_{10}$ $a_2 \ a_1 \ a_4 \ a_3 \ a_{14} \ a_7 \ a_8 \ a_5 \ a_{10} \ a_9 \ a_{12} a_{11} \ a_6 \ a_{15} a_{16} a_{13}$ $a_3 \ a_2 \ a_1 \ a_4 \ \vdots \ a_{15} \ a_8 \ a_5 \ a_6 \ \vdots \ a_{11} \ a_{10} \ a_9 \ a_{12} \ \vdots \ a_7 \ a_{16} \ a_{13} \ a_{14}$ a_4 a_3 a_2 a_1 ; a_{16} a_5 a_6 a_7 ; a_{12} a_{11} a_{10} a_9 ; a_8 a_{13} a_{14} a_{15} $a_5 a_{14} a_{15} a_{16}$; $a_1 a_4 a_3 a_2$; $a_{13} a_6 a_7 a_8$; $a_9 a_{12} a_{11} a_{10}$ $a_6 a_{15} a_{16} a_{13}$; $a_2 a_1 a_4 a_3$; $a_{14} a_7 a_8 a_5$; $a_{10} a_9 a_{12} a_{11}$ $a_7 a_{16} a_{13} a_{14}$; $a_3 a_2 a_1 a_4$; $a_{15} a_8 a_5 a_6$; $a_{11} a_{10} a_9 a_{12}$ $a_8 \ a_{13} a_{14} a_{15}; \ a_4 \ a_3 \ a_2 \ a_1; a_{16} \ a_5 \ a_6 \ a_7; a_{12} a_{11} a_{10} \ a_9$ $a_9 a_{12} a_{11} a_{10}$; $a_5 a_{14} a_{15} a_{16}$; $a_1 a_4 a_3 a_2$; $a_{13} a_6 a_7 a_8$ $a_{10} a_9 a_{12} a_{11}$: $a_6 a_{15} a_{16} a_{13}$: $a_2 a_1 a_4 a_3$: $a_{14} a_7 a_8 a_5$ $a_{11}a_{10} a_9 a_{12}$: $a_7 a_{16}a_{13}a_{14}$: $a_3 a_2 a_1 a_4$: $a_{15} a_8 a_5 a_6$ $a_{12}a_{11}a_{10} \ a_9 \ \vdots \ a_8 \ a_{13}a_{14}a_{15} \ \vdots \ a_4 \ a_3 \ a_2 \ a_1 \ \vdots \ a_{16} \ a_5 \ a_6 \ a_7$ $a_{13} a_6 a_7 a_8 : a_9 a_{12} a_{11} a_{10} : a_5 a_{14} a_{15} a_{16} : a_1 a_4 a_3 a_2$ $a_{14} a_7 a_8 a_5 : a_{10} a_9 a_{12} a_{11} : a_6 a_{15} a_{16} a_{13} : a_2 a_1 a_4 a_3$ $a_{15} a_8 a_5 a_6 = a_{11} a_{10} a_9 a_{12} = a_7 a_{16} a_{13} a_{14} = a_3 a_2 a_1 a_4$ $\mathsf{L} a_{16} \, a_5 \, a_6 \, a_7 \, : \, a_{12} a_{11} a_{10} \, a_9 \, : \, a_8 \, a_{13} a_{14} a_{15} \, : \, a_4 \, a_3 \, a_2 \, a_1 \, \mathsf{L}$

$$\begin{split} \mathbf{ii})G_6 &= D_4\langle\alpha\rangle \times C_2\langle\beta\rangle = \langle\alpha,\beta,\gamma:\alpha^4 = \beta^2 = \gamma^2 = 1, \beta\alpha = \alpha^{-1}\beta, \gamma\alpha = \alpha\gamma.\gamma\beta = \beta\gamma\rangle \\ &= \{1,\alpha,\alpha^2,\alpha^3,\beta,\alpha\beta,\alpha^2\beta,\alpha^3\beta,\gamma,\alpha\gamma,\alpha^2\gamma,\alpha^3\gamma,\beta\gamma,\alpha\beta\gamma,\alpha^2\beta\gamma,\alpha^3\beta\gamma\} \\ w &= a_11 + a_2\alpha + a_3\alpha^2 + a_4\alpha^3 + a_5\beta + a_6\alpha\beta + a_7\alpha^2\beta + a_8\alpha^3\beta + a_9\gamma + a_{10}\alpha\gamma + a_{11}\alpha^2\gamma \\ &\quad + a_{12}\alpha^3\gamma + a_{13}\beta\gamma + a_{14}\alpha\beta\gamma + a_{15}\alpha^2\beta\gamma + a_{16}\alpha^3\beta\gamma. \end{split}$$

$$T_{B_0}(w_0) = M(a_1, a_2, a_3, a_4) = \begin{bmatrix} a_1 a_4 a_3 a_2 \\ a_2 a_1 a_4 a_3 \\ a_3 a_2 a_1 a_4 \\ a_4 a_3 a_2 a_1 \end{bmatrix}$$

$$T_{B_0}(w_1) = M^{\beta}(a_5, a_6, a_7, a_8) = \begin{bmatrix} a_5 a_6 a_7 a_8 \\ a_6 a_7 a_8 a_5 \\ a_7 a_8 a_5 a_6 \\ a_8 a_5 a_6 a_7 \end{bmatrix}$$

Representation of group algebra of 16 order non-abelian groups

$$T_{B_0}(w_2) = M(a_9, a_{10}, a_{11}, a_{12}) = \begin{bmatrix} a_9 a_{12}a_{11}a_{10} \\ a_{10} a_9 a_{12}a_{11} \\ a_{11}a_{10} a_9 a_{12} \\ a_{12}a_{11}a_{10} a_9 a_{12} \\ a_{12}a_{11}a_{10} a_9 a_{12} \\ a_{12}a_{11}a_{10} a_9 a_{12} \end{bmatrix}$$

$$T_{B_0}(w_3) = M^{\beta}(a_{13}, a_{14}, a_{15}, a_{16}) = \begin{bmatrix} a_{13}a_{14}a_{15}a_{16} \\ a_{14}a_{15}a_{16}a_{13} \\ a_{15}a_{16}a_{13}a_{14} \\ a_{16}a_{13}a_{14}a_{15} \end{bmatrix}$$

$$T_{B_1}(w_0) = M(a_1, a_2, a_3, a_4) = \begin{bmatrix} a_1a_4a_3a_2 \\ a_2a_1a_4a_3 \\ a_3a_2a_1a_4 \\ a_4a_3a_2 a_1 \end{bmatrix}$$

$$T_{B_1}(w_1) = M^{\beta}(a_5, a_6, a_7, a_8) = \begin{bmatrix} a_9a_{12}a_{11}a_{10} \\ a_6a_7a_8a_5 \\ a_7a_8a_5 \\ a_7a_8a_5 \\ a_8a_5a_6a_7 \end{bmatrix}$$

$$T_{B_1}(w_2) = M(a_9, a_{10}, a_{11}, a_{12}) = \begin{bmatrix} a_9a_{12}a_{11}a_{10} \\ a_{10}a_9a_{12}a_{11} \\ a_{110}a_9a_{12} \\ a_{12}a_{11}a_{10}a_9 \end{bmatrix}$$

$$T_{B_1}(w_3) = M^{\beta}(a_{13}, a_{14}, a_{15}, a_{16}) = \begin{bmatrix} a_{13}a_{14}a_{15}a_{16} \\ a_{14}a_{15}a_{16} \\ a_{14}a_{15}a_{16} \\ a_{14}a_{13}a_{14}a_{15} \end{bmatrix}$$

$$[w] = M\left(M\left(M(a_1, a_2, a_3, a_4), M^{\beta}(a_5, a_6, a_7, a_8)\right), M\left(M(a_9, a_{10}, a_{11}, a_{12}), M^{\beta}(a_{13}, a_{14}, a_{15}, a_{16})\right)\right)$$

$$\begin{bmatrix} a_1 a_4 a_3 a_2 : a_5 a_6 a_7 a_8 : a_9 a_{12}a_{11}a_{10}a_{13}a_{14}a_{15}a_{16} \\ a_12a_1a_{14}a_{15}a_{14} \\ a_{16}a_{13}a_{14}a_{15} \end{bmatrix}$$

$$\begin{bmatrix} a_1 a_4 a_3 : a_2 : a_5 a_6 a_7 a_8 : a_9 a_{12}a_{11}a_{10}a_{13}a_{14}a_{15}a_{16} \\ a_3 : a_2 : a_1 a_4 : a_3 a_2 : a_5 a_6 a_7 a_8 : a_9 a_{12}a_{11}a_{10}a_{13}a_{14}a_{15}a_{16} \\ a_3 : a_2 : a_1 a_4 : a_3 : a_5 a_6 : a_{11}a_{10} a_9 a_{12}a_{11}a_{10}a_{13}a_{14}a_{15}a_{16} \\ a_3 : a_2 : a_1 : a_8 a_5 a_6 : a_{11}a_{10} a_9 a_{12}a_{13}a_{14}a_{15}a_{16} \\ a_3 : a_2 : a_1 : a_8 a_5 a_6 : a_{11}a_{10} a_9 a_{12}a_{11}a_{10} a_{13}a_{14}a_{15}a_{16} \\ a_1 : a$$

iii)
$$G_8 = \langle \alpha, \beta, \gamma : \alpha^4 = \beta^2 = \gamma^2 = 1, \beta \alpha = \alpha \beta, \gamma \alpha = \alpha \gamma, \gamma \beta = \alpha^2 \beta \gamma \rangle$$

The general element is

$$w = a_1 1 + a_2 \alpha + a_3 \alpha^2 + a_4 \alpha^3 + a_5 \beta + a_6 \alpha \beta + a_7 \alpha^2 \beta + a_8 \alpha^3 \beta + a_9 \gamma + a_{10} \alpha \gamma$$

$$+ a_{11} \alpha^2 \gamma + a_{12} \alpha^3 \gamma + a_{13} \beta \gamma + a_{14} \alpha \beta \gamma + a_{15} \alpha^2 \beta \gamma + a_{16} \alpha^3 \beta \gamma.$$

$$\begin{bmatrix} a_1 & a_4 & a_3 & a_2 : a_5 & a_8 & a_7 & a_6 : a_9 & a_{12} a_{11} a_{10} : a_{15} a_{14} a_{13} a_{16} \\ a_2 & a_1 & a_4 & a_3 : a_6 & a_5 & a_8 & a_7 : a_{10} & a_9 & a_{12} a_{11} : a_{16} a_{15} a_{14} a_{13} \\ a_3 & a_2 & a_1 & a_4 : a_7 & a_6 & a_5 & a_8 : a_{11} a_{10} & a_9 : a_{12} a_{13} a_{16} a_{15} a_{14} \\ a_4 & a_3 & a_2 & a_1 : a_8 & a_7 & a_6 & a_5 : a_{12} a_{11} a_{10} & a_9 : a_{14} a_{13} a_{16} a_{15} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_5 & a_8 & a_7 : a_6 : a_1 & a_4 & a_3 & a_2 : a_{13} a_{16} a_{15} a_{14} : a_{11} a_{10} & a_9 a_{12} \\ a_6 & a_5 & a_8 & a_7 : a_2 & a_1 & a_4 & a_3 : a_{14} a_{13} a_{16} a_{15} : a_{12} a_{11} a_{10} & a_9 \end{bmatrix}$$

 a_7 a_6 a_5 a_8 ; a_3 a_2 a_1 a_4 ; $a_{15}a_{14}a_{13}a_{16}$; a_9 $a_{12}a_{11}a_{10}$ a_8 a_7 a_6 a_5 ; a_4 a_3 a_2 a_1 ; $a_{16}a_{15}a_{14}a_{13}$; a_{10} a_9 $a_{12}a_{11}$

 $\begin{bmatrix} \cdots \cdots \cdots \vdots \cdots \cdots \vdots \cdots \cdots \vdots \cdots \cdots \vdots \cdots \cdots \cdots \vdots \cdots \cdots \cdots \vdots \\ a_{13}a_{16}a_{15}a_{14} \vdots a_{11}a_{10} & a_9 & a_{12} \vdots & a_5 & a_8 & a_7 & a_6 \vdots & a_1 & a_4 & a_3 & a_2 \\ a_{14}a_{13}a_{16}a_{15} \vdots a_{12}a_{11}a_{10} & a_9 \vdots & a_6 & a_5 & a_8 & a_7 \vdots & a_2 & a_1 & a_4 & a_3 \\ a_{15}a_{14}a_{13}a_{16} \vdots & a_9 & a_{12}a_{11}a_{10} \vdots & a_7 & a_6 & a_5 & a_8 \vdots & a_3 & a_2 & a_1 & a_4 \\ a_{16}a_{15}a_{14}a_{13} \vdots a_{10} & a_9 & a_{12}a_{11} \vdots & a_8 & a_7 & a_6 & a_5 \vdots & a_4 & a_3 & a_2 & a_1 \end{bmatrix}$

The authors wish to thank Professor Kahtan H. Alzuaidy for his valuable comments and suggestions.

References

- [1] Kahtan H. Alzubaidy, Nabila M. Bennour, Matrix Representation of Group Algebras of General Metacyclic Groups, International Journal of Mathematics and its Applications, 2021,9(3), 33-36.
- [2] Nabila M. Bennour and Kahtan H. Alzubaidy, Representation of Group Algebras of Non-Abelian Groups of order p^3 , for a Prime $p \ge 3$, European Journal of Mathematics and Statistics, 2024; 5(2), 1-5.
- [3] David Clausen, Classifying All Groups of Order 16, University of Puget Sound Spring 2012, http://www.gnu.org/copyleft/fdl.html.
- [4] Nathan Jacobson, Basic Algebra I, 2nd edition, W.H. Freeman New York 1996.
- [5] David S. Dummit, Richard M. Foote, Abstract Algebra, 3rd edition. Wiley, 2003.