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Abstract 

In this paper, we introduce a reversed symmetric Tribonacchi sequence and establish a 

new recurrence relation associated with it. We construct an infinite series involving 

binomial coefficients derived from the classical Tribonacchi sequence, leading to the 

formulation of an infinite Abelian group. Furthermore, we develop a set of 2 by 2 

matrices, forming a matrix subgroup by employing the concepts of eigenvalues and 

eigenvectors tied to the reversed symmetric Tribonacchi sequence. Our results include 

closed-form expressions and combinatorial representations for the sums of terms in 

these newly defined sequences. Finally, we explore the interrelationships among these 

sequences, demonstrating how they naturally give rise to algebraic group and subgroup 

structures. 
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Definition 1: A semigroup  is a nonempty set G together with a binary operation on G, 
which is 
 
(i) associative:    𝑎(𝑏𝑐)  =  (𝑎𝑏)𝑐,  ∀ a , b, c ∈  G. 
 
A monoid  is a semigroup G which contains a  
 
(ii) (two sided) identity element   e ∈  G  such that  ae = ea = a∀ a ∈ G . 

A group is a monoid G such that  
 
 (iii) for every   a ∈  G there exist a(two-sided) inverse elementa−1   ∈  G  such that  
 

a−1a = aa−1 = e 
 
A semigroup G is said to be abelian or commutative if its binary operation is 
 
(iv) commutative: ab = ba∀ a , b  ∈  G . 
 
Examples: 
1. Let = ℝ\{0} , and 𝑛 ∈ ℕ. Then G= GL(𝑛 , 𝐹) be the set of all 𝑛 by 𝑛  matrice with 
entries in  𝐹.  this is a group with 𝑔 ∗ ℎ  given by matrix multiplication.  
2. Symmetric groups (Symmetries of Graphs): We view n-gon as a graph of n 
sides. The symmetries of an 𝑛- gon form a group. 
 
We sometimes can proof some facts just by providing a counter example. To provide 

familiar counter examples or to construct such an example from a given set is not an 

easy task. Group theory’s origin trace back to the late 18th and 19th centuries, with 

key contributions from Lagrange, Ruffini, and Abel in the context of solving 

polynomial equations. Evariste Galois is created with formalizing the concept of a 

group and its connection to the solvability of equations, now known as Galois Theory. 

Geometry and number theory also played a significant role in its development. 

 
Group theory continued to develop through the 20th century, becoming a cornerstone 

of abstract algebra and finding applications in diverse areas of mathematics and 

physics. A major achievement of group theory in the late 20th century and early 21st 

centuries was the classification of finite simple groups. 

 
For instance 

We view n-gon as a graph of n sides. The symmetries of an 𝑛- gon  form a group. 
 
A.  B. C.           D.   
 
 
 

Note: Rotation anticlockwise by 
2𝜋

3
  from each vertex, and reflection about the line 

through each vertex of a triangle describes the symmetries of an equilateral triangle. 
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Symmetries of an equilateral triangle. Consider a 3-gon that is an equilateral triangle 
There are precisely six symmetries of the 3-gon. 
 
  
 
 
 
 
 
 
 
𝐷3 = {𝑒 , 𝑔 , 𝑔𝑜𝑔 , ℎ , 𝑔𝑜ℎ , ℎ𝑜𝑔} =  {𝑒 , 𝑔 , 𝑔2 , ℎ , 𝑔ℎ , ℎ𝑔}. The identity 𝑒 is not included 
in the above diagram here.  
 
Rotation anticlockwise by 2π/3 (which we call g) and reflection about the median 
 
The Dihedral Group 

The dihedral group 𝐷𝑛 is the group consisting of the Rotation and Reflection of an 𝑛 – 

sided regular polygon that transform the polygon into itself. For such a polygon, we 

can rotate it by 2𝜋𝑛  about its center, or reflect it about a line of symmetry that 

passes through its center. 

 
The group element corresponding to a rotation by 2𝜋𝑛 is denoted by 𝑟. Repeating the 

rotation gives the elements 

{2 (
2𝜋

𝑛
) , 3 (

2𝜋

𝑛
) , 4 (

2𝜋

𝑛
) ,− − −, 𝑛 (

2𝜋

𝑛
) = 2𝜋} 

 
Since applying  , 𝑛 times restores the polygon to its original orientation, we have  

r𝑛 = 1. Thus , counting the identity, there are  𝑛 rotation  elements in the dihedral 

group 𝐷𝑛.   

 
What about reflections? Since we can reflect about any of the  𝑛  medians, there are 𝑛 

distinct reflections. Thus the order of 𝐷𝑛 is  |𝐷𝑛| = 2𝑛 .  

  

If we denote a reflection by 𝑆𝑖  , for  𝑖 = 1, 2 ,3 , − − −, 𝑛 then we see geometrically 

that repeating𝑠𝑖   returns the polygon to its original state, so 𝑠𝑖
2 = 𝑒 . 

 
Thus     𝐷𝑛= {1 , 𝑟 , 𝑟2 , 𝑟3 , − , − , − , 𝑟𝑛−1 , 𝑠1 , 𝑠2 , 𝑠3 , − − −, 𝑠𝑛}  form a group 
 

 

 

 

 

g gog 

goh 

h 
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Sequence is a list of numbers arranged in a specific order. It can contain members 

similar to a set. However, sequence can have the same members repeated as much as 

possible at divergent locations.  Thus, pattern is a substantial element of a sequence. 

For instance, arithmetic, geometric, square, cube, Lucas, Fibonacci and Tribonacchi. 

 
Definition 2: 

A symmetric Inversed sequence:  A symmetric Inversed sequence is a sequence of 

numbers that has the property of set of Integers.  

ℤ = {− − −,−4  , −3 , −3,−1  ,0 , 1 , 2 , 3 , 4 , − − −} 
 
                 = {− − −,−4  , −3 ,−3, −1 } ∪ {0} ∪ {1 , 2 , 3 , 4 , − − −} 
 
                                                = ℤ− ∪ {0} ∪ ℤ+ 
                                                = ℤ−𝑛 ∪ {0} ∪ ℤ𝑛(Define:  ℤ−𝑛    =  − ℤ𝑛 ) 
Theℤ  set of integer, (ℤ , + )  is an example of an infinite set of commutative group. 
 
Fibonacci sequence is a sequence starting from 0 and 1 where the succeeding terms 

are taken from two previous terms that are stated. Moreover, Fibonacci – like 

sequences is a derivative of the Fibonacci sequence where the same pattern is 

applied. There only difference is that Fibonacci –like sequences starts at any two 

given terms. 

 
On the other hand, Tribonacchi sequence is a sequence of whole numbers with 

equations 𝑇0 = 0 ,  𝑇1 = 0 ,  and 𝑇2 = 1 ,  in which  𝑇𝑛 = 𝑇𝑛−1 + 𝑇𝑛−2 + 𝑇𝑛−3 .  This 

only means that the previous three terms are added to find the next terms. 

 
Just like Fibonacci and Fibonacci –like sequence, when the first three terms of the 

Tribonacchi sequences become arbitrary, it is known as Tribonacchi-like sequence. 

These sequences have many applications in environment, biology, and chemistry. 

Arts. Mathematics, music and among others as it occurs naturally.  

 
Definition3 

A Tribonacchi-like sequence is a sequence of number defined by  
𝑇0 = 0  ;  𝑇1 = 1  and   𝑇2 = 1 
and the recurrence equation    
 
𝑇𝑛   =    𝑇𝑛−1   +   𝑇𝑛−2   +   𝑇𝑛−3    for 𝑛 ≥ 4. For each Tribonacchi-like sequence𝑇𝑛 ,   
 

𝐺𝑛
𝑖   =   ∑ (−1)𝑘𝑖

𝑘=0 (
𝑖
𝑘
) 𝑇𝑛+𝑖−𝑘  ,    and     𝐹𝑛

𝑖  =   ∑ (
𝑖
𝑘
)𝑖

𝑘=0 𝑇𝑛+𝑖−𝑘    are always  

 
Tribonacchi- like sequences. 
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Definition 4:  

Tribonacchi  Sequence: Tribonacchi sequence is a sequence of whole numbers with 
equations 
 
𝑇0 = 0  ;  𝑇1 = 1    and   𝑇2 = 1 
 
in which 𝑇𝑛  =    𝑇𝑛−1   +   𝑇𝑛−2   +   𝑇𝑛−3   . 

 
When the first three terms of the Tribonacchi sequence become arbitrary, it is known 

as Tribonacchi-like sequence. Tribonacchi like sequence can start at any desired 

number. 

 
Definition 5: 

The sequence 
𝑆1 , 𝑆2, 𝑆3, . . . 𝑆𝑛  in which𝑆𝑛  =   𝑇𝑛−2𝑆1 + (𝑇𝑛−2 + 𝑇𝑛−3)𝑆2 + 𝑇𝑛−1𝑆3 

 
was obtained in solving the nth term of Tribonacchi-like sequence using the first three 

terms 

𝑆1 ,𝑆2  and  𝑆3  and Tribonacchi numbers and is called is a generalized Tribonacchi 

Sequence. 

These sequences have many applications in environment, Biology, Chemistry, Arts, 

Mathematics, Music and among others as it occurs naturally. 

 
The first 20 Tribonacchi Numbers.  See the table below 

 
𝑇1 

 
𝑇2 

 
𝑇3 

 
𝑇4 

 
𝑇5 

 
𝑇6 

 
𝑇7 

 
𝑇8 

 
𝑇9 

 
𝑇10 

 
0 

 
1 

 
1 

 
2 

 
4 

 
7 

 
13 

 
24 

 
44 

 
81 

 
The Tribonacchi numbers are a generalization of the Fibonacci defined by  
 
𝑇0 = 0  ;  𝑇1 = 1    and   𝑇2 = 1 
and the recurrence equation  
(1) 𝑇𝑛  =    𝑇𝑛−1   +   𝑇𝑛−2   +   𝑇𝑛−3    for 𝑛 ≥ 4  .     
 
 In these patterns, a formula   

(2) 𝑆𝑛 =   𝑇𝑛−2𝑆1 + (𝑇𝑛−2 + 𝑇𝑛−3)𝑆2 + 𝑇𝑛−1𝑆3 was obtained in solving the nth term 

of Tribonacchi-like sequence using the first  

 

 
𝑇11 

 
𝑇12 

 
𝑇13 

 
𝑇14 

 
𝑇15 

 
𝑇16 

 
𝑇17 

 
𝑇18 

 
𝑇19 

 
𝑇20 

 
14
9 

 
274 

 
504 

 
927 

 
1705 

 
3136 

 
5768 

 
10609 

 
19513 

 
35890 
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Three terms 𝑆1 ,   𝑆2  and  𝑆3  and   Tribonacchi numbers. 
 
Theorem 1: 
 
𝑇0 = 0,     𝑇1 = 1 ,   𝑇2 = 1 
 
𝑇𝑛 = 𝑇𝑛−3 +  𝑇𝑛−2  +  𝑇𝑛−1   ,        ∀ 𝑛 ≥ 3  
 

Define: 𝑆𝑛 = 𝑇𝑛+1 
2 − 𝑇𝑛

2  =    𝐺𝑛𝐹𝑛    where    𝐺𝑛 =  𝑇𝑛+1 − 𝑇𝑛   and    
 

𝐹𝑛 = 𝑇𝑛+1 +  𝑇𝑛  
 
𝐺𝑛and   𝐹𝑛are Tribonacchi-like sequences.  
 
Proof: I. Set 𝐺𝑛 = 𝑇𝑛+1 − 𝑇𝑛  ,   ∀ 𝑛 ≥ 3 .We show that  𝐺𝑛  = 𝐺𝑛−3  + 𝐺𝑛−2   +  𝐺𝑛−1 . 
 
𝐺𝑛 = 𝑇𝑛+1 − 𝑇𝑛   = 𝑇𝑛−2 + 𝑇𝑛−1 + 𝑇𝑛 − 𝑇𝑛   =   = 𝑇𝑛−2 + 𝑇𝑛−1  
 
 = ( 𝑇𝑛−3 + 𝑇𝑛−2 + 𝑇𝑛−1 )  -  𝑇𝑛−3 
 
=  𝑇𝑛 − 𝑇𝑛−3        
 
Consider  𝐺𝑛−3 =   𝑇𝑛−2 − 𝑇𝑛−3        (1) 
 
𝐺𝑛−2 =   𝑇𝑛−1 − 𝑇𝑛−2     and   
 
𝐺𝑛−1 =   𝑇𝑛 − 𝑇𝑛−1         
 
Combining the above, we’ve𝐺𝑛−3  + 𝐺𝑛−2   +  𝐺𝑛−1 
 
=(𝑇𝑛−2 − 𝑇𝑛−3 ) +  (𝑇𝑛−1 − 𝑇𝑛−2)   +  ( 𝑇𝑛 − 𝑇𝑛−1 ) 
 
= 𝑇𝑛 − 𝑇𝑛−3      (2)  
 
From (1) and (2)        𝐺𝑛 =  𝐺𝑛−3  +  𝐺𝑛−2   +  𝐺𝑛−1, ∀ ≥ 3 
 
II.  Set   𝐹𝑛 = 𝑇𝑛+1 + 𝑇𝑛  ,   ∀ 𝑛 ≥ 3 .   We show that     𝐹𝑛  = 𝐹𝑛−3  + 𝐹𝑛−2   +  𝐹𝑛−1 . 
 
𝐹𝑛  = 𝑇𝑛+1 + 𝑇𝑛 =   𝑇𝑛−2 + 𝑇𝑛−1 + 𝑇𝑛 + 𝑇𝑛  =  𝑇𝑛−2 + 𝑇𝑛−1 + 2𝑇𝑛  
 
=𝑇𝑛−2 + 𝑇𝑛−1 + 2(𝑇𝑛−3 + 𝑇𝑛−2 + 𝑇𝑛−1 ) 
 
= 3𝑇𝑛−2 +  3𝑇𝑛−1 + 2𝑇𝑛−3  
 
=  3𝑇𝑛−2 +  3𝑇𝑛−1 + 3𝑇𝑛−3  - 𝑇𝑛−3  
 
= 3(𝑇𝑛−2 + 𝑇𝑛−1 + 𝑇𝑛−3 ) -  𝑇𝑛−3  
 
 = 3𝑇𝑛 − 𝑇𝑛−3       (3)   
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Consider the sequence  
 
𝐹𝑛−3  + 𝐹𝑛−2   +  𝐹𝑛−1  =    (𝑇𝑛−2 + 𝑇𝑛−3 ) +  (𝑇𝑛−1 + 𝑇𝑛−2)   +  ( 𝑇𝑛 + 𝑇𝑛−1 ) 
 
= 2𝑇𝑛−2 + 2𝑇𝑛−1 +  𝑇𝑛−3   +  𝑇𝑛 
 
=  2𝑇𝑛−2 + 2𝑇𝑛−1 +  𝑇𝑛−3   +  𝑇𝑛  +   𝑇𝑛−3   -  𝑇𝑛−3 
 
=  2(𝑇𝑛−2 + 𝑇𝑛−1 +  𝑇𝑛−3  )  +  𝑇𝑛  -𝑇𝑛−3 
 
= 3𝑇𝑛  -𝑇𝑛−3        (4)  
 
from (3) and (4) we’ve𝐹𝑛  = 𝑇𝑛+1 + 𝑇𝑛  is Tribonacci –like sequences.                          ⊡ 
 
Consider the subsequences of Tribonacchi –like sequences 𝐹𝑛 and𝐺𝑛. For 

conveniences we denote the first subsequences of 𝐹𝑛    and   𝐺𝑛  by   𝐹𝑛
1    and 

𝐺𝑛
1respectively, so that   

𝑭𝒏
𝟏  =  𝑻𝒏+𝟏 + 𝑻𝒏     and       𝑮𝒏

𝟏 = 𝑻𝒏+𝟏 − 𝑻𝒏  and  the Second, the Third, .  .  .   , and 
the (𝑡 + 1)𝑡ℎ Tribonacchi-like subsequences respectively  
 

𝐹𝑛
2  =  𝐹𝑛+1

1 + 𝐹𝑛 
1 ,𝐺𝑛

2  =  𝐺𝑛+1
1 −  𝐺𝑛 

1 
  

𝐹𝑛
3  =  𝐹𝑛+1

2 + 𝐹𝑛 
2              ;               𝐺𝑛

3  =  𝐺𝑛+1
2 + 𝐺𝑛 

2 
 
⋮  ⋮ 
 

𝐹𝑛
𝑡+1  =  𝐹𝑛+1

𝑡 + 𝐹𝑛 
𝑡  ,        𝐺𝑛

𝑡+1  =  𝐺𝑛+1
𝑡 − 𝐺𝑛 

𝑡 
 
 

We will explore the subsequence   of   𝐺𝑛
1 = 𝑇𝑛+1 − 𝑇𝑛   .  (5) 

 
Coefficient in orders: (1 ,  -1 )  
 

𝐺𝑛
2  =  𝐺𝑛+1

1 −  𝐺𝑛 
1  =   ( 𝑇𝑛+2 − 𝑇𝑛+1  )  –  (𝑇𝑛+1 − 𝑇𝑛 )  

 
=  𝑇𝑛+2 − 2𝑇𝑛+1 + 𝑇𝑛         (6) 
 
Coefficients in order:  ( 1 ,  -2 ,  1 ) 
 
 
𝐺𝑛

3  =  𝐺𝑛+1
2 − 𝐺𝑛 

2   =  ( 𝑇𝑛+3 − 2𝑇𝑛+2 − 𝑇𝑛+1 ) – (𝑇𝑛+2 − 2𝑇𝑛+1 + 𝑇𝑛 )     ( from 
(5))  
 
= 𝑇𝑛+3 − 3𝑇𝑛+2 +  3𝑇𝑛+1   - 𝑇𝑛     (7) 
 
Coefficient in order: (1, -3,3, -1 ) 
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𝐺𝑛
4  =  𝐺𝑛+1

3 − 𝐺𝑛 
3  =  ( 𝑇𝑛+4 − 3𝑇𝑛+3 +  3𝑇𝑛+2  -𝑇𝑛+1 ) - (𝑇𝑛+3 − 3𝑇𝑛+2 +  3𝑇𝑛+1   -

𝑇𝑛 ) 
 (From (7))  

 
=  𝑇𝑛+4 − 4𝑇𝑛+3 + 6 𝑇𝑛+2  - 4𝑇𝑛+1   + 𝑇𝑛                           (7) 
 
Coefficient in order: (1 ,  -4 , 6 , - 4,  1  ) 
 
Coefficients are in the sequence of Pascal Triangle but the sign. 
 
 

 

 

 

Similarly, one can show that   
 

𝐹𝑛
1  =  𝑇𝑛+1 + 𝑇𝑛  

 

𝐹𝑛
2  =  𝐹𝑛+1

1 + 𝐹𝑛 
1     =     𝑇𝑛+2 + 2𝑇𝑛+1 + 𝑇𝑛  

  

𝐹𝑛
3  =  𝐹𝑛+1

2 + 𝐹𝑛 
2   =    𝑇𝑛+3 + 3𝑇𝑛+2 +  3𝑇𝑛+1  +  𝑇𝑛  

 
⋮  ⋮ 
 

𝐹𝑛
4  =  𝐹𝑛+1

3 + 𝐹𝑛 
3  =   𝑇𝑛+4 + 4𝑇𝑛+3 + 6 𝑇𝑛+2 + 4 𝑇𝑛+1   +  𝑇𝑛  

 
 
Theorem 2:   
 

Define     𝐺𝑛
𝑖=(△(𝒊) 𝑻)

𝒏
  =∑ (−1)𝑘𝑖

𝑘=0 (
𝑖
𝑘
) 𝑇𝑛+𝑖−𝑘  ,     (*) 

 
                                        and   
 

𝐹𝑛
𝑖  = (△(𝒊) 𝑻)

𝒏
= ∑ (

𝑖
𝑘
)𝑖

𝑘=0 𝑇𝑛+𝑖−𝑘   (**) 

 
 
𝐺𝑛
𝑖     and  𝐹𝑛

𝑖    are subsequences of Tribonacchi-like sequences   for  ∀ 𝑖 ≥ 1 and  
∀ 𝑛 ≥ 3 .  
 
That is  

{𝐺𝑛
(𝑖)}

𝑛≥3
  is a Tribonacci sequence in the variable 𝑛 . 
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where             𝑇0 = 0,     𝑇1 = 1 ,   𝑇2 = 1 
 
𝑇𝑛 = 𝑇𝑛−3 +  𝑇𝑛−2  +  𝑇𝑛−1    ,        ∀ 𝑛 ≥ 3. 
 
Proof: 
 
We prove by induction where 𝐺𝑛

𝑖 = 𝐺𝑛+1
𝑖−1 − 𝐺𝑛

𝑖−1 
 
 Let   𝑃(𝑖)  be the statement that  
 

𝑃(𝑖) :   𝐺𝑛
𝑖 = ∑ (−1)𝑘𝑖

𝑘=0 (
𝑖
𝑘
) 𝑇𝑛+𝑖−𝑘 .       (I) 

 
We verify that 𝑃(2)  is true. When i = 2, the left-side of (1), 

That is    𝐺𝑛
2 = ∑ (−1)𝑛2

𝑘=0 (
2
𝑘
)𝑇𝑛+2−𝑘       (II) 

 

∑ (−1)𝑛2
𝑘=0 (

2
𝑘
) 𝑇𝑛+2−𝑘= (−1)0 (

2
0
) 𝑇𝑛+2−0  +  (−1)1 (

2
1
) 𝑇𝑛+2−1+  (−1)2 (

2
2
)𝑇𝑛+2−2 

 
 = 𝑇𝑛+2  -2𝑇𝑛+1+𝑇𝑛   and    
 
𝐺𝑛
2 =𝐺𝑛+1

1    -      𝐺𝑛
1 

 
=  (𝑇𝑛+2  -𝑇𝑛+1)  -  (𝑇𝑛+1- 𝑇𝑛)      
 
   =  𝑇𝑛+2  -  2𝑇𝑛+1 +   𝑇𝑛                                (III) 
 
 
From (2) and (3) we see both sides of equation (1) are equal. Hence 𝑃(2)  is true.   
 
Suppose   𝑃(𝑡)  is true for some  𝑡 ∈  ℤ+, 𝑡 ≥ 2 ,  and  ∀ 𝑛 ≥ 1 i.e.,   
 

𝑃(𝑡) :   𝐺𝑛
𝑡 = ∑ (−1)𝑘𝑡

𝑘=0 (
𝑡
𝑘
) 𝑇𝑛+𝑡−𝑘                  (IV) 

 
Next, we show that   
 

𝑃(𝑡 + 1) :   𝐺𝑛
𝑡+1 =  ∑ (−1)𝑘𝑡+1

𝑘=0 (
𝑡 + 1
𝑘

) 𝑇𝑛+𝑡+1−𝑘                  (V) 

 
 
Consider the left-handside 𝐺𝑛

𝑡+1  =  𝐺𝑛+1
𝑡   -  𝐺𝑛

𝑡  
 

Where   𝐺𝑛+1
𝑡 = ∑ (−1)𝑘𝑡

𝑘=0 (
𝑡
𝑘
) 𝑇𝑛+1+𝑡−𝑘   and    𝐺𝑛

𝑡 =  ∑ (−1)𝑘𝑡
𝑘=0 (

𝑡
𝑘
) 𝑇𝑛+𝑡−𝑘 

 
Combining the former and later we have 
 
𝐺𝑛
𝑡+1=  𝐺𝑛+1

𝑡   -  𝐺𝑛
𝑡  
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 =  ∑ (−1)𝑘𝑡
𝑘=0 (

𝑡
𝑘
)𝑇𝑛+1+𝑡−𝑘  -   ∑ (−1)𝑘𝑡

𝑘=0 (
𝑡
𝑘
) 𝑇𝑛+𝑡−𝑘    from (5)  

 

=  ∑ (−1)𝑘𝑡
𝑘=0 (

𝑡
𝑘
) ( 𝑇𝑛+1+𝑡−𝑘  −   𝑇𝑛+ 𝑡−𝑘  )                     (VI) 

 
From the binomial expansion   ∀  𝑘 ≥ 1 ,  
 
(𝑡+1
𝑘
) =  (𝑡

𝑘
)  +   ( 𝑡

𝑘−1
)  and 

(
𝑛

𝑘
) = {

𝑛!

𝑘! (𝑛 − 𝑘)!
,     0 ≤ 𝑘 ≤ 𝑛

0             ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 

      Hence  (−1)𝑘(𝑡+1
𝑘
) =  (−1)𝑘(𝑡

𝑘
)  +  (−1)𝑘( 𝑡

𝑘−1
) 

 
                                             = (−1)𝑘(𝑡

𝑘
)  -  (−1)𝑘−1( 𝑡

𝑘−1
)   and 

 

𝐺𝑛
𝑡+1  = ∑ (−1)𝑘𝑡+1

𝑘=0 (
𝑡 + 1
𝑘

) 𝑇𝑛+𝑡+1−𝑘  

 
 
                 = ∑ ( (−1)𝑘(𝑡

𝑘
)   −   (−1)𝑘( 𝑡

𝑘−1
))𝑇𝑛+𝑡+1−𝑘

𝑡+1
𝑘=0  

 
 

  =  ∑ (−1)𝑘𝑡+1
𝑘=0 (

𝑡
𝑘
)𝑇𝑛+𝑡+1−𝑘    -∑ (−1)𝑘𝑡+1

𝑘=0 (
𝑡

𝑘 − 1
)𝑇𝑛+𝑡+1−𝑘  

 
 

 =   ∑ (−1)𝑘𝑡
𝑘=0 (

𝑡
𝑘
)𝑇𝑛+𝑡+1−𝑘    -∑ (−1)𝑘𝑡+1

𝑘=1 (
𝑡

𝑘 − 1
)𝑇𝑛+(𝑡+1)−𝑘) 

 
 

   =   ∑ (−1)𝑘𝑡
𝑘=0 (

𝑡
𝑘
)𝑇𝑛+𝑡+1−𝑘    -    ∑ (−1)𝑘𝑡

𝑘=1 (
𝑡
𝑘
) 𝑇𝑛+𝑡−𝑘  

 
 
   =   𝐺𝑛+1

𝑡   -  𝐺𝑛
𝑡         (VII) 

 

Conclusion:  We are applying for the finite difference operator△(𝒊) , 

𝑮𝒏
𝒊   =  (△(𝒊) 𝑻)

𝒏
  =   ∑ (−𝟏)𝒌𝒊

𝒌=𝟎 (
𝒊
𝒌
)𝑻𝒏+𝒊−𝒌 ,   and from (VI) and (VII)   P(t+1) is true. 

     ⊡ 
Since the Tribonacchi sequence  𝑇𝑛  satisfies a linear recurrence with constant 

coefficients, the finite differences of order 𝑖 also satisfy a linear recurrence of the 

same order , and in fact, under convolution with binomial coefficients, the resulting 

sequence 𝐺𝑛
𝑖   will still satisfy the same Tribonacchi recurrence, though it will be a 

different Tribonacchi sequence (with shifted initial value).∎ 
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Proposition 1:  For fixed,  𝑖 ≥ 1,  𝑮𝒏
𝒊   =  (△(𝒊) 𝑻)

𝒏
  =   ∑ (−𝟏)𝒌𝒊

𝒌=𝟎 (
𝒊
𝒌
)𝑻𝒏+𝒊−𝒌 , 

 
is a Tribonacchi sequence in 𝑛    for  𝑛 ≥ 3  and  that is  
 

𝑮𝒏
𝒊   =  𝑮(𝒏−𝟏)

𝒊    +   𝑮(𝒏−𝟐)
𝒊     +    𝑮(𝒏−𝟑)

𝒊       for  𝑛 ≥ 6    .   

 
Theorem 3 

In the same way as we proved (*) one can show that (**), 𝐹𝑛
𝑖  =   ∑ (

𝑖
𝑘
)𝑖

𝑘=0 𝑇𝑛+𝑖−𝑘       

holds true.  
 

That is {𝐹𝑛
(𝑖)}

𝑛≥3
    is a Tribonacci sequence. 

 
For illustration 
  
Let                             𝑇0 = 0,     𝑇1 = 1 ,   𝑇2 = 1 

𝑇𝑛 = 𝑇𝑛−3 +  𝑇𝑛−2  +  𝑇𝑛−1    ,        ∀ ≥ 3  
 

{
 
 
 
 

 
 
 
 

𝐺𝑛
1 = 𝑇𝑛+1 + 𝑇𝑛 

𝐺𝑛
2 =  𝐺𝑛+1

1 + 𝐺𝑛
1

𝐺𝑛
3 =  𝐺𝑛+1

2 + 𝐺𝑛
2

𝐺𝑛
4 =  𝐺𝑛+1

3 + 𝐺𝑛
3

 𝐺𝑛
𝑖+1 = 𝐺𝑛+1

𝑖 + 𝐺𝑛
𝑖  , ∀ 𝑖 ≥ 1   and fixed    𝑛 ≥ 1

 

 𝐺𝑛
𝑖 = ∑(

𝑖

𝑘
)

𝑖

𝑘=0

𝑇𝑛+𝑘 

𝐺1
1 = 𝑇1 + 𝑇2𝐺1

2 =   𝑇1 + 2𝑇2 + 𝑇3𝐺1
3 = 𝑇1 + 3𝑇2 + 3𝑇3 + 𝑇4 

𝐺1
4 = 𝑇1 + 4𝑇2 + 6𝑇3 +  4𝑇4 + 𝑇5 

 
 

𝐺2
1 = 𝑇2 + 𝑇3𝐺2

2 =  𝑇2 + 2𝑇3 + 𝑇4𝐺2
3 = 𝑇2 + 3𝑇3 + 3𝑇4 + 𝑇5 

𝐺2
4 = 𝑇2 + 4𝑇3 + 6𝑇4 +  4𝑇5 + 𝑇6 

 
 

𝐺3
1 = 𝑇3 + 𝑇4𝐺3

2 =  𝑇3 + 2𝑇4 + 𝑇5𝐺3
3 = 𝑇3 + 3𝑇4 + 3𝑇5 + 𝑇6 

𝐺3
4 = 𝑇3 + 4𝑇4 + 6𝑇5 +  4𝑇6 + 𝑇7 

 
 

𝐺4
1 = 𝑇4 + 𝑇5𝐺4

2 =  𝑇6 + 2𝑇5 + 𝑇4𝐺4
3 = 𝑇4 + 3𝑇5 + 3𝑇6 + 𝑇7 

𝐺4
4 = 𝑇4 + 4𝑇5 + 6𝑇6 +  4𝑇7 + 𝑇8 
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𝐺5
1 = 𝑇5 + 𝑇6𝐺5

2 =  𝑇7 + 2𝑇6 + 𝑇5𝐺5
3 = 𝑇5 + 3𝑇6 + 3𝑇7 + 𝑇8 

 
𝐺5
4 = 𝑇5 + 4𝑇6 + 6𝑇7 +  4𝑇8 + 𝑇9 

 
𝐺6
1 = 𝑇6 + 𝑇7𝐺6

2 =  𝑇8 + 2𝑇7 + 𝑇6𝐺6
3 = 𝑇6 + 3𝑇7 + 3𝑇8 + 𝑇9 

𝐺6
4 = 𝑇6 + 4𝑇7 + 6𝑇8 +  4𝑇9 + 𝑇10 

 
 𝐺𝑛
𝑖+1 = 𝐺𝑛+1

𝑖  +   𝐺𝑛
𝑖   ,   ∀ 𝑖 ≥ 1   and fixed    𝑛 ≥ 1 

 
𝐺1
1 = 𝑇1 + 𝑇2𝐺1

2 = 𝐺2
1+ 𝐺1

1𝐺1
3 = 𝐺2

2 +  𝐺1
2𝐺1

4 = 𝐺2
3 + 𝐺1

3 
 

𝐺2
1 = 𝑇2 + 𝑇3𝐺2

2 = 𝐺3
1 + 𝐺2

1𝐺2
3 = 𝐺3

2 + 𝐺2
2𝐺2

4 = 𝐺3
3 + 𝐺2

3 
 

𝐺3
1 = 𝑇3 + 𝑇4𝐺3

2 = 𝐺4
1+ 𝐺3

1𝐺3
3 = 𝐺4

2 +  𝐺3
2𝐺3

4 = 𝐺4
3 + 𝐺3

3 
 

𝐺4
1 = 𝑇4 + 𝑇5𝐺4

2 = 𝐺5
1 +  𝐺4

1𝐺4
3 = 𝐺5

2 + 𝐺4
2𝐺4

4 = 𝐺5
3 + 𝐺4

3 
 

𝐺5
1 = 𝑇5 + 𝑇6𝐺5

2 = 𝐺6
1  +  𝐺5

1𝐺5
3 = 𝐺6

2 +  𝐺5
2𝐺5

4 = 𝐺6
3 + 𝐺5

3 
 

𝐺6
1 = 𝑇6 + 𝑇7𝐺6

2 = 𝐺7 
1 + 𝐺6

1𝐺6
3 = 𝐺7

2 + 𝐺6
2𝐺6

4 = 𝐺7
3 + 𝐺6

3 

 
Define a set 𝑆𝑖  which is the family of sets . 

 
𝑆𝑖  = {𝐺𝑡

𝑖 ∶   𝑡 ≥ 1  }    and   𝑆𝑖 = {𝐺𝑖
𝑡 ∶   𝑡 ≥ 1 } . 

For instance 𝑆1 = {𝐺𝑡
1 ∶   𝑡 ≥ 1} = {𝐺1

1 , 𝐺2
1 , 𝐺3

1 , .   .   .   }  and  𝑆1 = {𝐺1
𝑡 ∶   𝑡 ≥ 1 } =   

{𝐺1
1 , 𝐺1

2 , 𝐺1
3 , .   .  . }, respectively. 
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Tn Gₙ ¹ = Tₙ ₊₁ 

- Tₙ  

Gₙ ² = 

Gₙ ₊₁¹ - Gₙ ¹ 

Gₙ ³ = 

Gₙ ₊₁² - Gₙ ² 

Gₙ ⁴ = 

Gₙ ₊₁³ - Gₙ ³ 

Gₙ ⁵ = Gₙ ₊₁⁴ 

- Gₙ ⁴ 

0 1 -1 2 -2 2 

1 0 1 0 0 2 

1 1 1 0 2 -2 

2 1 0 2 -2 2 

3 2 1 2 0 2 

5 3 1 2 2 2 

8 6 3 2 0 0 

11 13 7 4 4 2 

24 20 13 14 12 12 

44 37 31 26 22 18 

81 68 57 48 40 34 

149 125 105 88 74  

274 230 193 162   

504 423 355    

927 778     

1705      
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𝑮𝒏
𝟏𝑮𝒏

𝟐𝑮𝒏
𝟏 + 𝑮𝒏

𝟐𝑮𝒏
𝟑𝑮𝒏

𝟏 + 𝑮𝒏
𝟐 + 𝑮𝒏

𝟑𝑮𝒏
𝟒𝑮𝒏

𝟑  + 𝑮𝒏
𝟒  

 

0                      1                1                          3             4                          8                       11 
1                      2                3                          5             8                          14                    19 
1                      3                4                          9             13                        26                    35 
2                      6                8                          17          25                         48                    65 
4                      11             15                        31          46                         88                   119 
7                     20              27                        57          84                         162                 219 
13                   37             50                        105        155                       298                403 
24                   68             92                     193        285                       548                741 
44                   125          169                      355        524                       1008             1363 
81                   230          321                      653        974                       1854         2507 
149                423          572                      1201      1773                     3410         4611 
274                778          1052                   2209       3261                    6272         8481 

   504                1431       1935                   4063       5998                     11536         15599 
927                2632        3559                  7473       11032                   21218         28691 

   1705             4841        6546                   13745    20191                   39026         52771 

 

 

Proposition 2:  The sequence 𝑇𝑛   is an odd function.  
 

We Redefine the Tribonacchi sequence so that it behaves like an odd function., that is   
𝑇−𝑛 = −𝑇𝑛. 
And we are keeping only the Initial condition: 𝑇0 = 0. 
 
Remark:   We define 𝑇−𝑛 = −𝑇𝑛 , ∀𝑛 , then it is just saying that:  

              A          B A+B          C A+B+C      D A+B+C+D 

𝑻𝒏 =  𝑻𝒏−𝟑 +
𝑻𝒏−𝟐 + 𝑻𝒏−𝟏  

𝑮𝒏
𝟏 =
𝑻𝒏+𝟏 + 𝑻𝒏  

 
 

𝑮𝒏
𝟐 =

𝑮𝒏+𝟏
𝟏 + 𝑮𝒏

𝟏   

 𝑮𝒏
𝟑 =

𝑮𝒏+𝟏
𝟐 + 𝑮𝒏

𝟐   

 

0 1 1 3 4 8 12 

1 2 3 5 8 14 22 

1 3 4 9 13 26 39 

2 6 8 17 25 48 73 

4 11 15 31 46 88 134 

7 20 27 57 84 162 246 

13 37 50 105 155 298 453 

24 68 92 193 285 548 833 

44 125 16
9 

355 524 1008 1532 

81 230 32
1 

653 964 1854 2818 

149 423 57
2 

1201 1773 3410 4183 

140



Infinite Abelian group extracted from an infinite sequence 

Volume 8 Issue No 7 (2025) Access: https://gphjournal.org/index.php/m 

 

 
 𝑇𝑛 is odd-symmetric about 0, like 𝑓(−𝑥) =  −𝑓(𝑥) 
So, for any 𝑛, if the property holds for 𝑛, it will hold true for (𝑛+1), because  

 
𝑻−(𝒏+𝟏) = −𝑻(𝒏+𝟏) 

 
Theorem4: 
 
We define the Tribonacchi sequence so that  𝑇−𝑛 = −𝑇𝑛 and start with  𝑇0 = 0 , then 
the property   
𝑻−(𝒏+𝟏) = −𝑻(𝒏+𝟏)follows naturally for all∀𝒏 ≥ 𝟎 .  

 
Proof 
We prove by induction that   𝑇−𝑛 = −𝑇𝑛 ,     ∀𝒏 ≥ 𝟎 . 
For n = 0.  Then  𝑇−0 = 𝑇0 = 0 = −𝑇0.  
Assume that:  
𝑇−𝑘 = −𝑇𝑘∀k ≤ n . 
We want to show that 
𝑻−(𝒏+𝟏) = −𝑻(𝒏+𝟏) . 

Using the Tribonacchi recurrence formula also the reversed one: 
The reverse recurrence formula: 
𝑻−(𝒏+𝟏) = 𝑻−(𝒏+𝟒) = 𝑻−(𝒏+𝟏)+𝟑 − 𝑻−(𝒏+𝟏)+𝟐 − 𝑻−(𝒏+𝟏)+𝟏 

                                   =  𝑻−(𝒏−𝟐) − 𝑻−(𝒏−𝟏) − 𝑻−𝒏  

Now applying the induction hypothesis:  
𝑻−(𝒏−𝟐) = − 𝑻(𝒏−𝟐)  ,  𝑻−(𝒏−𝟏) = − 𝑻−(𝒏−𝟏)    and    𝑻− 𝒏 = −𝑻𝒏 

 
So, plugging in we have   
𝑻−(𝒏+𝟏) = −𝑻(𝒏+𝟏)   induction step holds.                            

 
Conclusion:   By mathematical induction, we shown: 𝑻− 𝒏 = −𝑻𝒏∀ 𝒏 ≥ 𝟎 
 
Provided we define the following Tribonacchi sequence with   

 𝑻𝟎 = 𝟎 
 Reversed recurrence: 𝑻𝒏−𝟑 = 𝑻𝒏 − 𝑻𝒏−𝟏 − 𝑻𝒏−𝟐 

 And Symmetry enforced as a part of a rule 

  
Theorem 5 
For set A =𝑻−𝒏 ∪ {0} ∪ 𝑻𝒏, (𝐴 , +)   is an infinite abelian group. 

 
Proof:  

 {−,−,−,−7,−4 ,−2 ,−1 , −1 , 0 , 1 , 1 , 2 , 4 , 7,− , − , −  } 
 
            =  {−, −, −, −7,−4 ,−2 , −1 ,−1 } ∪ {0} ∪ { 1 , 1 , 2 , 4 , 7,− ,− ,−  } 
 
            = 𝑻−𝒏 ∪ {0} ∪ 𝑻𝒏  =  𝐴 
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A is the of Symmetric Inversed sequence. The identity is = 0 ∈ 𝐴 . For each element =
𝑥 ∈ 𝐴 , there exist 𝑢 = −𝑥 ∈ 𝐴  such that 𝑚 + 𝑢 = 0. This shows every element is 
invertible. 

 
Moreover, 𝑥 + 𝑦 = 𝑦 + 𝑥  because formal addition property, and A is  an infinite set. 
Hence  (𝐴 , +)   is infinite abelian group. 

Theorems 6:  Consider the sets 
 

I. 𝐺𝑛 = 𝑇𝑛+1 − 𝑇𝑛  ,   and   𝐹𝑛 =  𝑇𝑛+1 + 𝑇𝑛  . ∀ 𝑛 ≥ 3 .    
 
(𝐺𝑛 , +)  and   (𝐹𝑛 , +)    are Infinite abelian groups.  
 
2. (𝐺𝑛

𝑖  , +)     and    (𝐹𝑛
𝑖 , +)       where  

 

𝐺𝑛
𝑖 = ∑ (−1)𝑘𝑖

𝑘=0 (
𝑖
𝑘
)𝑇𝑛+𝑖−𝑘     and      𝐹𝑛

𝑖  =   ∑ (
𝑖
𝑘
)𝑖

𝑘=0 𝑇𝑛+𝑖−𝑘  

 
 are infinite abelian groups.   
 
Proof. It follows from the fact that both sets are Tribonacchi Sequences. In particular, 

they are symmetric Inversed sequence, 𝐺−𝑛 = −𝐺𝑛,  𝐹−𝑛 =  −𝐹𝑛 ,  𝐺−𝑛
𝑖 = −𝐺𝑛

𝑖  , 𝐹−𝑛
𝑖 =

−𝐹𝑛
𝑖  and the operation is closed. (Theorem 1- 6).        

 
Example. See the tables above.  

Given a two-by-Two matrix  

 

𝑋 = (
𝑇𝑛+1 𝑇𝑛
𝑇𝑛 𝑇𝑛+1

) 

Where 𝑇 =  {𝑥 ∶  𝑥 = 𝑇𝑛 , 𝑓𝑜𝑟 𝑛 = 0, 1 , 2 ,3 , − , − , −} 
                       = {0 ,1, 1, 2, 4, 7, 13, 24, - - -} 
                      = { 𝑇0, 𝑇1 ,  𝑇2 , 𝑇3 ,, 𝑇4 , 𝑇5 ,  𝑇6 , 𝑇7 , - - - }  

 

Consider 𝑆𝑛 = {𝑋:  𝑋 = (
𝑇𝑛+1 𝑇𝑛
𝑇𝑛 𝑇𝑛+1

) , 𝑛 ∈  ℤ+ , 𝑇𝑛 ∈ 𝑇 }  

Theorem 7: 
For each 𝑋 ∈  𝑆𝑛 , 

 
 
 
 

𝑋𝑚 =  (
𝑇𝑛+1 𝑇𝑛
𝑇𝑛 𝑇𝑛+1

)
𝑚

= 

(

 
 
(𝐹𝑛)

𝑚
+ (𝐺𝑛)

𝑚

2
(𝐹𝑛)

𝑚
− (𝐺𝑛)

𝑚

2
(𝐹𝑛)

𝑚
− (𝐺𝑛)

𝑚

2
(𝐹𝑛)

𝑚
+ (𝐺𝑛)

𝑚

2 )
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Proof: 

Set  𝑇𝑛+1 = 𝑎    and   𝑇𝑛 = 𝑏       so that     (
𝑇𝑛+1 𝑇𝑛
𝑇𝑛 𝑇𝑛+1

)
𝑚

= (
𝑎 𝑏
𝑏 𝑎

)
𝑚

 

 
We can diagonalizable 𝑋 because the matrix is symmetric.   

 Consider (𝑋 − 𝜆𝐼) = (
𝑎 𝑏
𝑏 𝑎

) − 𝜆 (
1 0
0 1

) = (
𝑎 − 𝜆 𝑏
𝑏 𝑎 − 𝜆

) 

 
To find the Eigenvalue, we are solving the equation 

𝑑𝑒𝑡(𝑋 − 𝜆𝐼) = 𝑑𝑒𝑡 (
𝑎 − 𝜆 𝑏
𝑏 𝑎 − 𝜆

) = 0    

 
This gives, (𝑎 − 𝜆)2− 𝑏2 = 0, and   solving for   𝜆,  
𝜆 =  (𝑎 + 𝑏)    and   𝜆 =  (𝑎 − 𝑏). 
 
Next we find the Eigen vector(s); 
Case I.   When  𝜆 =  (𝑎 + 𝑏)    , we have 
 

(
(𝑎 + 𝑏) − (𝑎 + 𝑏) 𝑏

𝑏 (𝑎 + 𝑏) − (𝑎 − 𝑏)
) = (

0 𝑏
𝑏 0

) 

 

When solving the equation 𝑏𝑥1 + 0𝑥2 = 0, we have Eigenvectors  𝑣1 = [
1
1
] 

 
Case II. When  𝜆 =  (𝑎 − 𝑏)    , we have 
 
        We have 
 

(
(𝑎 + 𝑏) − (𝑎 − 𝑏) 𝑏

𝑏 (𝑎 + 𝑏) − (𝑎 − 𝑏)
) = (

0 𝑏
𝑏 0

) 

 

⟹  The solution gives the Eigenvector    𝑣2 = [
1
−1
] 

 

 The next step will be diagonalization.  Let   P = [
1
1
1
−1
]   and   D = [

𝑎 + 𝑏
0

0
𝑎 − 𝑏

] 

 
As   X = P D 𝑃−1   we have      𝑋𝑚 = (𝑃𝐷𝑃−1)𝑚 =  P D𝑚𝑃−1. 

 

D = [
𝑎 + 𝑏
0

0
𝑎 − 𝑏

] ⇒ 𝐷𝑚 =  [
𝑎 + 𝑏
0

0
𝑎 − 𝑏

]
𝑚

 =          [
(𝑎 + 𝑏)𝑚 0

0 (𝑎 − 𝑏)𝑚
] 

 

⟹ 𝑋𝑚 = (𝑃𝐷𝑃−1)𝑚 =  P D𝑚𝑃−1 = P [
(𝑎 + 𝑏)𝑚 0

0 (𝑎 − 𝑏)𝑚
]𝑃−1 

 

For   P = [
1
1
1
−1
], we have 𝑃−1 = 

1

2
[
1
1
1
−1
]   . 

 

This implies,  𝑋𝑚 = (𝑃𝐷𝑃−1)𝑚 =  P D𝑚𝑃−1  = P [
(𝑎 + 𝑏)𝑚 0

0 (𝑎 − 𝑏)𝑚
] 𝑃−1 
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                                                         = [
1
1
1
−1
] *  [

(𝑎 + 𝑏)𝑚 0

0 (𝑎 − 𝑏)𝑚
] ∗  

1

2
[
1
1
1
−1
] 

Commitment  

                                                      = 
1

2
 * [
1
1
1
−1
] *  [

(𝑎 + 𝑏)𝑚 0

0 (𝑎 − 𝑏)𝑚
] ∗ [

1
1
1
−1
] 

 

                                      = 
1

2
 * [
(𝑎 + 𝑏)𝑚 + (𝑎 − 𝑏)𝑚 (𝑎 + 𝑏)𝑚 − (𝑎 − 𝑏)𝑚

(𝑎 + 𝑏)𝑚 − (𝑎 − 𝑏)𝑚 (𝑎 + 𝑏)𝑚 + (𝑎 − 𝑏)𝑚
] 

 

⇒ 𝑋𝑚 = [

(𝑎 + 𝑏)𝑚 + (𝑎 − 𝑏)𝑚

2

(𝑎 + 𝑏)𝑚 − (𝑎 − 𝑏)𝑚

(𝑎 + 𝑏)𝑚 − (𝑎 − 𝑏)𝑚

2

(𝑎 + 𝑏)𝑚 + (𝑎 − 𝑏)𝑚

2

] 

 

                                =  (

(𝐹𝑛)
𝑚+(𝐺𝑛)

𝑚

2

(𝐹𝑛)
𝑚−(𝐺𝑛)

𝑚

2
(𝐹𝑛)

𝑚−(𝐺𝑛)
𝑚

2

(𝐹𝑛)
𝑚+(𝐺𝑛)

𝑚

2

) 

 
Theorem 8: 

Let 𝑅 =   {𝑎 ∗ (
𝐴 𝐵
𝐵 𝐴

) :   𝐴 =
(𝐹𝑛)

𝑚+(𝐺𝑛)
𝑚

2
, and  𝐵 =

(𝐹𝑛)
𝑚−(𝐺𝑛)

𝑚

2
 , a ∈ (2ℤ)} 

 
(𝑅 , +) , is an abelian group of infinite set. 
 
Proof: 

Let  M =  𝑎1 ∗ (
𝐴1 𝐵1
𝐵1 𝐴1

)        and          N = 𝑎2 ∗ (
𝐴2 𝐵2
𝐵2 𝐴2

) 𝑎1 , 𝑎2  ∈  ℤ  . 

 

Then 𝑀 −  𝑁  = 𝑎1 ∗ (
𝐴1 𝐵1
𝐵1 𝐴1

) + 𝑎2 ∗ (
𝐴2 𝐵2
𝐵2 𝐴2

) 

             =  (𝑎1 − 𝑎2) ∗ ((
𝐴1 𝐵1
𝐵1 𝐴1

) − (
𝐴2 𝐵2
𝐵2 𝐴2

)) 

             =(𝑎1 − 𝑎2)* ((
𝐴1 − 𝐴2 𝐵1 − 𝐵2
𝐵1 − 𝐵2 𝐴1 − 𝐴2

)) 

            = 𝑎3* (
𝐴1 − 𝐴2 𝐵1 − 𝐵2
𝐵1 − 𝐵2 𝐴1 − 𝐴2

)  where     𝑎3 = (𝑎1 − 𝑎2)  ∈ ( 2ℤ) 

 

           =𝑎3*(
(𝐹𝑛1)

𝑚 + (𝐺𝑛1)
𝑚
− (𝐹𝑛2)

𝑚 − (𝐺𝑛2)
𝑚 (𝐹𝑛1)

𝑚 − (𝐺𝑛1)
𝑚
− (𝐹𝑛2)

𝑚 + (𝐺𝑛2)
𝑚

(𝐹𝑛1)
𝑚 − (𝐺𝑛1)

𝑚
− (𝐹𝑛2)

𝑚 + (𝐺𝑛2)
𝑚 (𝐹𝑛1)

𝑚 + (𝐺𝑛1)
𝑚
− (𝐹𝑛2)

𝑚 − (𝐺𝑛2)
𝑚
) 

 

= 𝑎3*(
(𝐹𝑛1)

𝑚 − (𝐹𝑛2)
𝑚 + (𝐺𝑛1)

𝑚
− (𝐺𝑛2)

𝑚 (𝐹𝑛1)
𝑚 − (𝐹𝑛2)

𝑚 + (𝐺𝑛2)
𝑚 − (𝐺𝑛1)

𝑚

(𝐹𝑛1)
𝑚 − (𝐹𝑛2)

𝑚 + (𝐺𝑛2)
𝑚 − (𝐺𝑛1)

𝑚 (𝐹𝑛1)
𝑚 − (𝐹𝑛2)

𝑚 + (𝐺𝑛1)
𝑚
− (𝐺𝑛2)

𝑚
) 

 

(𝐹𝑛1)
𝑚 + (𝐺𝑛1)

𝑚
− (𝐹𝑛2)

𝑚 − (𝐺𝑛2)
𝑚   and   (𝐹𝑛1)

𝑚 − (𝐹𝑛2)
𝑚 + (𝐺𝑛1)

𝑚
− (𝐺𝑛2)

𝑚  
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Are sum of two Tribonacchi like sequences which is Tribonacchi sequence.  Thus 
(𝑀 − 𝑁) ∈ 𝑅 and follows R is an abelian group.  
 
Conclusion: 

Further research is being conducted on the generalized Tribonacchi sequence, 
specifically the sequence   𝑆1 , 𝑆2, 𝑆3, . . .,𝑆𝑛  , where  
 
𝑆𝑛 =   𝑇𝑛−2𝑆1 + (𝑇𝑛−2 + 𝑇𝑛−3)𝑆2 + 𝑇𝑛−1𝑆3 
 
The goal is to extend this investigation to explore the underlying infinite group 

structures related to matrix multiplication and function composition. These findings 

offer compelling examples that bridge number theory with group theory, highlighting 

rich mathematical interconnection. 
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