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Abstract 

This study presents a mathematical model of HIV/AIDS transmission using a system of differential equations 

known as the SEIAT model, which classifies the population into Susceptible, Exposed, Infected, AIDS-infected, 

and Treated compartments. The model incorporates treatment as a key control strategy in managing the disease 

spread. Analytical methods were employed to examine the existence of equilibrium points, and the basic 

reproduction number ( 0R
) was derived using the next-generation matrix approach. Both local and global 

stability analyses were carried out to determine the conditions under which HIV/AIDS persists or dies out in the 

population. Numerical simulations supported the analytical results and provided insights into the model’s 

dynamic behavior. Sensitivity analysis was also conducted to assess the influence of various parameters on 0R
. 

The results revealed that reducing the contact rate between susceptible and infected individuals, as well as 

increasing treatment rates, significantly lowers the basic reproduction number and curtails the spread of the 

disease. Based on these findings, it is recommended that public health interventions prioritize reducing risky 

contact behavior and expanding access to effective treatment programs as vital strategies for controlling 

HIV/AIDS transmission 
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1. Introduction  

HIV/AIDS remains a significant global health challenge, affecting millions of lives and 

presenting complex hurdles for public health systems worldwide. The human 

immunodeficiency virus (HIV) leads to acquired immunodeficiency syndrome (AIDS), a 

condition that devastates the immune system, making individuals extremely vulnerable to 

infections and certain cancers (World Health Organization WHO, 2023) [5, 22]. Despite the 

development of effective antiretroviral therapies (ART), which can manage the virus and 

greatly reduce transmission, the fight against HIV/AIDS continues, especially in low- and 

middle-income countries where the epidemic remains particularly severe (UNAIDS, 2023) 

[4]. Recent statistics highlight the ongoing struggle with HIV/AIDS. Currently, around 38 

million people are living with HIV worldwide, and about 1.5 million new infections occured 

each year (UNAIDS, 2023) [4]. Sub-Saharan Africa is still the most affected region, with 

over two-thirds of the global total residing there (WHO, 2023). While advances in treatment 

and prevention have made a difference, challenges such as limited access to healthcare, social 

stigma, and economic barriers continue to deepen the impact in these regions (Centers for 

Disease Control and Prevention CDC, 2024) [1]. 

The advent of ART in the 1990s marked a turning point in the fight against HIV/AIDS, 

transforming it from a death sentence to a manageable chronic condition for many (Gottfried, 

2022) [2]. ART involves a combination of medications that target different stages of the HIV 

life cycle, effectively suppressing the virus and allowing individuals to maintain a near-

normal life expectancy (National Institute of Allergy and Infectious Diseases NIAID, 2023) 

[4, 21]. These treatments not only help prevent the progression to AIDS but also significantly 

reduce the risk of transmission to others, making ART a cornerstone in both individual and 

public health strategies. Ongoing research into more effective and less burdensome treatment 

regimens, such as long-acting formulations and potential cure strategies like gene therapy and 

broadly neutralizing antibodies, continues to improve patient outcomes and adherence 

(Gottfried, 2022) [2, 20]. However, barriers such as drug resistance, side effects, and the 

challenge of ensuring universal access remain critical issues that need to be addressed to fully 

control the epidemic (WHO, 2023) [5]. Prevention strategies have also seen notable progress. 

For instance, pre-exposure prophylaxis (PrEP) has been shown to significantly lower the risk 

of HIV infection among high-risk groups (CDC, 2024) [1, 19]. Public health campaigns and 

educational efforts have contributed to a decline in new infections in many places. 

Nevertheless, reaching global targets to end the AIDS epidemic by 2030 requires ongoing 

dedication and innovation in prevention, treatment, and support (UNAIDS, 2023) [5, 18]. 

Therefore, while there have been remarkable strides in managing and preventing HIV/AIDS, 

the battle is far from over. Addressing the challenges related to healthcare access, stigma, and 

socioeconomic inequalities is crucial for making further progress. Continued research, global 

cooperation, and community-based efforts will be essential to ultimately controlling and 

ending the epidemic (Gottfried, 2022; NIAID, 2023) [1,4]. Jansen, V.A.A., et al. (2023) [6]. 

This study developed a detailed mathematical model to examine HIV transmission dynamics 

specifically within high-risk populations such as men who have sex with men (MSM) and 

intravenous drug users (IDUs). The model assessed various intervention strategies, including 
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pre-exposure prophylaxis (PrEP), needle exchange programs, and targeted educational 

campaigns. The findings demonstrated that a combination of these interventions could 

significantly reduce HIV transmission rates, providing valuable insights into optimizing the 

allocation of resources for maximal public health impact. Patel, K., et al. (2023) [7]. This 

study focused on the effects of antiretroviral therapy (ART) on HIV transmission dynamics 

through a compartmental model. The model incorporated variables such as ART adherence, 

drug resistance, and viral suppression. The study highlighted the critical role of maintaining 

high adherence rates and monitoring drug resistance to ensure that ART remains effective in 

reducing HIV transmission and controlling the epidemic. Liu, X., & Zhang, L. (2024) [8].   

Liu and Zhang introduced a mathematical model that included the impact of co-infections, 

such as tuberculosis and hepatitis C, on HIV/AIDS progression. Their model showed how 

these co-infections influenced the progression of HIV and the effectiveness of treatment. The 

study underscored the necessity of integrated healthcare approaches that address both HIV 

and co-infections to enhance treatment outcomes and overall patient care. 

Wang, Y., et al. (2024) [9]. This research evaluated potential HIV vaccination strategies 

using a stochastic model. It simulated various scenarios, including targeted and mass 

vaccination campaigns. The results indicated that, although vaccines alone might not 

eradicate HIV, they could substantially reduce prevalence and incidence, especially when 

combined with other preventive and therapeutic measures. The study emphasized the 

importance of integrating vaccines into broader HIV control strategies. Garcia, R., et al. 

(2024) [10]. Garcia and colleagues developed a spatial-temporal model to analyze the spread 

of HIV/AIDS in urban environments. The model took into account factors such as urban 

density, migration, and social networks. The findings revealed that urbanization and mobility 

patterns significantly impacted HIV transmission rates. The study suggested that targeted 

interventions considering these spatial dynamics could be more effective in controlling 

HIV/AIDS in cities. 

The study aims to develop a mathematical model for controlling HIV/AIDS transmission 

dynamics . Its objectives are multifaceted. First, the study seeks to construct a mathematical 

model that represents the transmission dynamics of HIV/AIDS. It will compute the basic 

reproduction number for this model and analyze its stability through detailed mathematical 

investigations. Additionally, the study plans to conduct a sensitivity analysis to understand 

how various parameters influence the basic reproduction number. Numerical simulations will 

be employed to validate theoretical insights derived from the model. Furthermore, the study 

will assess the effectiveness of different HIV/AIDS control strategies, including expanded 

access to antiretroviral therapy (ART), prevention programs, and educational campaigns, by 

simulating their impacts on disease dynamics. It will also explore regional variations in 

HIV/AIDS transmission across different states in Nigeria and within Africa  to tailor control 

measures to local contexts. 
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2.0 Materials and Method 

2.1 Model Formulation. 

The total human population at time t, denoted by  N t , is sub-divided into five (5) mutually 

exclusive compartments: Susceptible humans  S t , Exposed humans  E t , Infected humans 

with HIV  I t , Infected humans with HIV/AIDS   A t  and Individuals on treatment  T t . 

The total human population is given by          ( )N t S t E t I t A t T t     .The 

recruitment of individuals into the susceptible population occurs at a rate denoted by   . The 

force of infection, denoted by  λ reduces the susceptible population and increases the exposed 

population. The parameter    represents the effective contact rate. The populations of HIV-

infected and HIV/AIDS-infected individuals increase at rates    and (1 )    respectively. 

The parameter   denotes the progression rate from the HIV-infected compartment to the 

HIV/AIDS-infected compartment. All population compartments experience a decrease due to 

the natural death rate, denoted by  . The treatment rates for HIV-infected individuals and 

HIV/AIDS-infected individuals are denoted by 
1   and  

2   respectively. Their respective re 

infection rates are denoted by 
2   and  

1 . Additionally, the HIV/AIDS-infected population is 

further decreased by the disease-induced death rate, denoted by  . 

2.1 Assumption of the model 

The following mathematical assumptions were used to formulate the model  

1. There is re-infection of treated humans from both   ( )I t and A t . 

2. Disease induced death occurs only in the HIV/AIDS compartment  

3. The population mixture  is homogeneous  

4. The transmission of disease in HIV infected individuals to HIV/AIDS infected 

individuals is relatively minima due to effective treatment  

 

Fig. 1: Schematic diagram of the model 
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Table 1:   Variable and Parameters description 

Variables 

 

Interpretation 

S  Susceptible humans  

E  Exposed humans  

I  Diagnosed HIV infected class  

A  Diagnosed HIV/AIDS infected class  

T HIV/AIDS infected patients under treatment  

Parameter  Description  

Λ  Recruitment Rate  

  Contact rate between uninfected population and the infected individuals  

  Natural death rate  

  Disease induced death rate  

  Progression rate from E to I 

  Modification parameter rate accounts for reduced rate of infection 

1  Progression rate from I to A  

2  Progression  rate from T to I 

1  Treatment rate of AIDS infected humans  

2  Progression  rate from T back to A due  

 

2.2  Model Equations 

From the model description above, the differential equations modeling the transmission 

dynamics of HIV/AIDS  in the population is given as 

 

 

 

2 1

2 1

1 1 2 2

( )

( )

(

E

(1 )

1)

dS
S

dt

dE
S

dt

dI
E I

dt

dA
E I T A

dt

dT
I A T

dt

T

 

  

    

      

    

   

  

    

      

    

 

The force of infection of the  HIV/AIDS model in (1) is given as:

 

( )I A

N





  
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Let  1 ,P     12 ,P      13 ,P      24 2 .P    
 

2.3  Invariant region of the HIV/AIDS model 

In mathematical modeling , an invariant region is a subset of the model's state space where 

the system's solutions are confined over time. This concept is essential for understanding 

disease dynamics, as it helps determine whether the infection will lead to scenarios like an 

epidemic outbreak or stabilize within certain bounds [17]. By identifying these regions, 

researchers can analyze how the disease progresses. 

Lemma 1 

The solutions of the proposed HIV/AIDS  model are feasible for all t > 0, if they enter the 

invariant region D, which is given by: 

  , , , , , : 0, 0, 0, 0, 0,D S E I A T S E I A T N


 
       
 

 

Proof 

The total population of the humans in the HIV/AIDS model is given as 

          ( )N t S t E t I t A t T t      

The sum of the differential equations is 

          ' ' ' ' ' '( )N t S t E t I t A t T t      

On evaluating the algebraic terms, we obtain 

    '

2 1 2 1( ) ( ) ( ) ( )N t S E I A T I A T                   

  '

2 1 2 1( ) ( ) ( ) ( )N t N I A T               

 
dN

N
dt

    

Solving the differential equation using the integrating factor method, we obtained 

 ( ) (0) tN t N e 

 

  
   

 
 

Applying Birkhoff and Rota’s theorem on the inequality, we obtain   

 0 N



  as t   

Thus, D  is a positively invariant set under the flow described by the model (1) so that no 

solution path leaves through the boundary of region D .Thus, in this region, the HIV/AIDS 
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model can be considered as being epidemiologically and mathematically well posed [15, 16, 

17]. 

2.4  Positivity of solution of the HIV/AIDS model 

It is necessary to prove that all state variable of the HIV/AIDS model in are nonnegative for 

all time ( )t , for the model to be epidemiologically and mathematically well posed in a 

feasible region D  given by: 

     5, , , , , :D S E I A T R S E I A T N         

This is done by considering, 

   5, , , , 0S E I A T R   

Lemma 2: 

Let the initial data for the model (1) be  , , , , 0S E I A T  . Then the solutions  , , , ,S E I A T  

of the model (1) are positive for all time 0t   

Proof 

Let  sup 0: 0, 0, 0, 0, 0 [0, ]t t S E I A T t        . Thus 0.t   

We have from the first equation that 

  
dS

S
dt

      

 ( )
dS

S
dt

     

This can also be written as 

 ( )
dS

dt
S

      

We obtained: 

  ln S t C      

 
 

( )
t

S t Ce
  

  

Applying the initial condition; when 0,  (0)t S C   

Therefore, 
 ( ) (0) 0

t
S t S e

  
  since   0    
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Similarly, it can be shown that , , , 0E I A T   

2.5  Asymptotic stability of the disease free equilibrium of the Cholera model 

The disease-free equilibrium (DFE) in epidemiological models is a state where the disease is 

absent from the population, meaning there are no infections. It indicates a scenario where the 

disease has been eradicated or is not spreading. Analyzing the stability of the DFE helps 

determine if current conditions and interventions can effectively eliminate the disease [12, 

14]. If small disturbances do not lead to disease resurgence, the DFE is considered stable, 

suggesting that eradication is feasible. A point where 0E I T A     is called the disease-

free equilibrium point (DFE) which is given 

  * * * * *

0 , , , , ,0,0,0,0,S E I A T


 
   

 
 

2.6  Basic reproduction number of the model (R0) 

The basic reproduction number ( 0R )  represents  the average number of secondary infections 

produced by a single infected person in a fully susceptible population. It is a key indicator in 

epidemiology for assessing the potential for disease transmission. If  0R  exceeds 1, it suggests that 

each infected individual is likely to spread the disease to more than one other person, increasing the 

risk of an outbreak [ 15,17]. If 0R  is below 1, the disease is expected to diminish and eventually 

disappear. Knowing 0R  is vital for designing effective public health strategies. It provides insights 

into the likelihood of an epidemic and helps shape interventions such as vaccination campaigns and 

social distancing measures. By analyzing 0R , health authorities can evaluate the success of these 

measures and make informed decisions to control and limit the spread of infectious diseases [16]. We 

calculate the basic reproduction number by using the next generation operator method on the 

dynamical system (1).  

Hence, it follows that 

  1

0R FV  where  is the dominant eigenvalue of 1FV   

0 0

0 0 0 0

0 0 0 0

0 0 0 0

F

  
 
 
 
 
 

, 
 

1

2 2

3 2

1 1 4

0 0 0

0

1

0

P

P
V

P

P

 

   

 

 
 

 
 
    
 

  

, 
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   
    

 
1

1
2 2 1 3 4 3 4 1 2 2 32 1

2 3 4 2 1 2 3 2 2 1 2 3 4 2 1 2 3 2 2 1 2 3 4 2 1 2 3 2 2 11 2 2 2 3 4 2 2 1

2 4 4 2 2 4 2 2

1 2 3 4 2 1 2 3 2

1
0 0 0

1

P P P P P

P P P P P P P P P P P P P P PP P P P P

P P P P P

P P

P

FV

P P P P

          

                 

     

   



    

           

   


 




 

 
 

 
 

4 2 2 4 2 2 2 2

2 3 4 2 1 2 3 2 2 1 2 3 4 2 1 2 3 2 2 1 2 3 4 2 1 2 3 2 2 12 1

2 1 3 1 2 1 2 1 3 1 2 1

1 2 3 4 2 1 2 3 2 2 1 1 2 3 4 2 1 2 3 2 2 1

P P P P

P P P P P P P P P P P P P P P

P P P P P P

P P P P P P P P P P P P

    

               

         

         

  

        

     
 

     

2 32 1

2 3 4 2 1 2 3 2 2 1 2 3 4 2 1 2 3 2 2 1

P PP

P P P P P P P P P P



             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



 

       
    

1 1 2 1 2 2 3 4 2 1 1 2 4 2

0

2 1 3 1 2 3 4 1 2 1

1P P P P P
R

P P P P P

            

     

           


   
 

2.7  Local Asymptotic Stability of the DFE of the HIV/AIDS Model 

Local asymptotic stability of the Disease-Free Equilibrium (DFE) in an HIV/AIDS model 

means that if the system is slightly disturbed near the DFE, it will return to this equilibrium 

where no infections are present. To determine this stability, researchers analyze the 

eigenvalues of the Jacobian matrix around the DFE. If all eigenvalues have negative real 

parts, the DFE is stable, suggesting the disease will be controlled effectively [15, 16]. If any 

eigenvalue has a positive real part, the DFE is unstable, indicating a risk of disease spread or 

persistence. 

Theorem 1 

The disease-free equilibrium point of the HIV/AIDS model is locally asymptotically stable 

(LAS) if 0 1R  , and unstable if 0 1R  . 

Proof 

Using Jacobian matrix to prove the local stability of the disease free equilibrium point 

  

The Jacobian matrix of the HIV/AIDS model is given as  

 

 

1

0 2 2

3 2

1 1 4

0 0

0 0

0 0

0 1

0 0

P

J P

P

P

  

 

  

   

 

   
 


 
  
 

  
  

 

   4 3
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Applying the Routh Hurwitz criterion, we see that  

 0

0

1 0

1

R

R

 

 
 

2.8 Global Asymptotic Stability Analysis Using Lyapunov Method 

Global asymptotic stability of the disease-free equilibrium is a critical property in epidemiological 

models, indicating that the disease will eventually die out in the population regardless of the initial 

conditions, provided the basic reproduction number, 0R , is less than one. The Lyapunov method is a 

powerful tool for establishing such stability. Here, we apply this method to the given model [17]. 

The DFE corresponds to the state where no individuals in the population are infected, exposed, 

asymptomatic, or under treatment. By setting the right-hand sides of the model equations to zero, we 

obtain the DFE: 

 

 * * * * *, 0, 0, 0, 0.S E I A T



      

To establish global asymptotic stability of the DFE, we construct a Lyapunov functionV , which is a 

non-negative scalar function of the system states. A suitable choice forV is: 

 
1 1 2 2

( , , , ) .
E I A T

V E I A T
a         

   
      

 

This function is designed to be positive definite, meaning ( , , , ) 0V E I A T  and
* * * *( , , , ) 0V E I A T  , 

where
* * * * 0E I A T    corresponds to the DFE. 

The time derivative ofV along the trajectories of the system is given by: 

 

 
1 1 2 2

1 1 1
 

1
.

dV dE dI dA dT

dt dt a dt dt dt         
   

      
 

Substituting the model equations into this expression:  

   2 1

1

1 1
( ) ( )

dV
S E E a I

dt a
      

   
       

  
 

 2 1

1

1
          (1 ) ( )E aI T A     

  
      

 
 

 1 1 2 2

2 2

1
           ( ) .I A T    

  
    

 
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Simplifying this expression, we observe that many terms cancel out, leaving us with: 

 2 2 1 1

1 1 2 2

(1 )E E aI T I AdV S
E I A T

dt a

      

         

    
       

      
 

To prove global asymptotic stability, it is sufficient to show that 0
dV

dt
 , with equality holding only 

at the DFE. This requires careful examination of the remaining terms. If the negative terms dominate 

the positive terms for all possible values of the state variables, then:

 0 for all , , , 0.
dV

E I A T
dt

   

To establish global asymptotic stability using the Lyapunov function, we need to analyze the time 

derivative
dV

dt
along the trajectories of the system. 

The Lyapunov functionV is defined as: 

 
1 1 2 2
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a         
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Taking the time derivative ofV along the trajectories of the system: 

 
1 1 2 2

1 1 1 1
.

dV dE dI dA dT
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Substituting the model equations into the expression for
dV

dt
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Simplify the expression 

Next, we simplify each term: 

1. For  
1

( )S E  
 

 


:   
1

( )
S

S E E


  
   

   
 
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2. For  2 1

1

1
( )E a I

a
   

 
   

 
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1
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Combining all the terms, we get: 

2

1 1

dV S E
E

dt a a
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To prove global asymptotic stability, we need to demonstrate that 0
dV

dt
 . This implies that the 

negative terms must dominate the positive terms. 

Given that
( )I A

N





 , it follows that: 

( )
.

( )

S S I A

N

 

   




 
 

1. The term E is negative and dominates the first positive term
S

 
when S is close to

*S



 and

E is not too small. 

2. The terms I and A are also negative, ensuring the decrease ofV in the directions of I and A . 

3. The terms 2

1a



  
, 2

1

T

   
, and 1

2 2

I

   
are positive constants that depend on the 

parameters. However, they are dominated by the negative terms when I and A are small. 
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Given that the Lyapunov function is constructed such that it decreases over time (as negative terms 

dominate), we conclude that 0
dV

dt
 . 

We verify the conditions for equality 

The condition 0
dV

dt
 occurs if and only if 0E I A T    , meaning the system is at the DFE. 

Therefore, the only equilibrium point at which 0
dV

dt
 is the disease-free equilibrium 

Since 0
dV

dt
 and 0

dV

dt
 only at the DFE, the disease-free equilibrium is globally asymptotically 

stable. This proves that regardless of the initial conditions, the system will eventually return to the 

DFE, provided the basic reproduction number 0 1R  . This completes the analysis, demonstrating that 

the chosen Lyapunov function is effective in establishing the global asymptotic stability of the DFE 

for the given epidemiological model. 

2.9 Endemic equilibrium points of the model 

Endemic equilibrium points in an HIV/AIDS model refer to states where the disease persists in the 

population at a constant level, neither vanishing nor growing exponentially [23]. Unlike the Disease-

Free Equilibrium (DFE), where no infections are present, an endemic equilibrium represents a 

situation where there is a stable presence of infections over time. At this point, the rate of new 

infections and the rate of recoveries or deaths balance out, resulting in a steady prevalence of the 

disease. Analyzing endemic equilibrium points helps in understanding how the disease will behave 

under various conditions and interventions [16]. The equilibrium point of the model is  given below 
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2.10  Sensitivity Analysis 

Sensitivity analysis is carried out to determine the parameters that enhances the spread as 

well as control of an infection in a population [15]. The sensitivity index of the reproduction 

number of the HIV/AIDS model with respect to any parameter say p is given by: 
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Final Sensitivity Analysis Results: 

1. Sensitivity Index for  : 1 

2. Sensitivity Index for  : 1 
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4. Sensitivity Index for 1 : 51.447 10   

5. Sensitivity Index for 2 : 41.276 10   

6. Sensitivity Index for 1 : 53.422 10  

7. Sensitivity Index for 2 : 53.422 10  

8. Sensitivity Index for  : 41.012 10   

9. Sensitivity Index for  : 55.748 10   

10. Sensitivity Index for  : 64.228 10   

 
Figure 2: Sensitivity Bar chart 

The sensitivity bar chart revealed that both the contact rate and the reinfection rate exhibit 

positive sensitivity indices with respect to the basic reproduction number of the HIV/AIDS 

model. This indicates that increases in either of these parameters lead to a corresponding 

increase in 0R , thereby facilitating the continued transmission and spread of HIV/AIDS 

within the population [23]. The contact rate represents the frequency at which susceptible 

individuals come into contact with infected individuals, while the reinfection rate accounts 

for the possibility of individuals who have previously been treated becoming re-infected. 

High values of these parameters imply greater opportunities for the virus to propagate, 

undermining control efforts. Therefore, any intervention strategies aimed at reducing the 

contact rate such as promoting safe sexual practices, increasing awareness and education, and 

reducing high-risk behaviors would significantly contribute to curbing the spread of the 

disease. Similarly, minimizing the reinfection rate through sustained adherence to treatment 

regimens, regular monitoring, and support for long-term behavior change is essential in 
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controlling disease resurgence. On the other hand, the treatment rate is associated with a 

negative sensitivity index, suggesting that it plays a crucial role in reducing 0R . In other 

words, increasing the treatment rate contributes to lowering the disease burden by decreasing 

the number of infectious individuals capable of transmitting the virus. Enhancing treatment 

coverage, ensuring early diagnosis and prompt initiation of antiretroviral therapy (ART), and 

improving access to healthcare services are therefore vital measures in strengthening 

HIV/AIDS control efforts. 

3.0 Numerical Simulations of the model 

Through numerical simulations conducted using MATLAB, we obtained graphical solutions that 

depicted the behavior of the HIV/AIDS model. These simulations provided visual representations of 

how key variables, such as the number of infected and susceptible individuals, evolved over time 

under varying conditions. By adjusting parameters such as transmission rates, treatment effectiveness, 

and intervention strategies, the simulations illustrated potential outcomes, including disease outbreaks 

or stabilization [13]. The graphical solutions offered insights into real-life behavior by demonstrating 

how the disease might spread or be controlled in practice. They allowed us to observe trends, such as 

fluctuations in infection rates, and to evaluate the effectiveness of different public health 

interventions. By comparing these simulations with actual epidemiological data, we were able to 

refine the model and enhance predictions, ultimately contributing to more effective strategies for 

managing and controlling HIV/AIDS. 

Table 2.  Parameter  values used in the model and their sources  

Parameter Value Source 

  0.202 Assumed 

  0.0000548 [11] 

  0.01 [11] 

  0.01 Assumed 

  0.0021 [14] 

  0.001 [12] 

1  0.2 Assumed 

2  0.2 [11] 

1  0.08 [11] 

2  0.01 [11] 
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Figure 3 a. Graph of Susceptible human with time        Figure 3b. Graph Exposed human with time 

              

Figure 3c. Graph of infected HIV  human with time        Figure 3d. Graph infected HIV/AIDS  human with time 

 

Figure 3e. Graph of treated  human with time         
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4. Discussion  

Figure 3a illustrates the temporal dynamics of the susceptible population, showing a gradual 

decline in the number of individuals who are vulnerable to HIV infection. Over time, this 

group eventually diminishes to zero, indicating that all susceptible individuals have either 

become infected, received preventive intervention, or moved into other epidemiological 

compartments due to the modeled disease dynamics. This trend reflects the effectiveness of 

preventive strategies, such as awareness campaigns, condom use, behavioral changes, and 

possibly pre-exposure prophylaxis (PrEP), in reducing the pool of individuals at risk of 

contracting HIV. Figure 3b complements this observation by showing a similar decreasing 

pattern in the exposed population, which includes individuals who have come into contact 

with the virus but are not yet infectious. The decline in this group suggests that early 

detection, screening, and rapid linkage to care are successfully interrupting the progression 

from exposure to active infection. It also points to the success of control measures that reduce 

the likelihood of exposure in the first place. Figures 3c and 3d present the disease progression 

in individuals who are HIV-infected and those who have developed AIDS, respectively. Both 

curves show an initial rapid rise in the number of infected individuals, which reflects the 

natural course of the epidemic when control measures are still being established or are 

initially insufficient. However, after this initial peak, there is a notable and sustained decline 

in the infected populations, ultimately approaching zero. This reversal in trend highlights the 

impact of effective treatment interventions, such as antiretroviral therapy (ART), which not 

only prolongs life but also reduces viral load, thereby lowering transmission rates. Figure 3e 

provides crucial insight into the treatment rate over time, showing a consistent or increasing 

application of therapeutic interventions. This rise in treatment coverage is the primary driver 

behind the downward trends observed in Figures 3c and 3d. As more individuals receive 

treatment, the infectiousness of the population decreases, transmission chains are broken, and 

overall disease prevalence is reduced. 

5. Conclusion  

The SEIAT model developed to study HIV/AIDS transmission has provided valuable insights 

into the dynamics of the disease and the influence of various factors on its spread. The 

analysis revealed that both the contact rate and reinfection rate, which had positive sensitivity 

indices, significantly drive the transmission of HIV/AIDS. This underscores the importance 

of interventions aimed at reducing contact rates and minimizing reinfection to control the 

disease. In contrast, the treatment rate showed a negative sensitivity index, indicating its vital 

role in decreasing the prevalence of HIV/AIDS. Enhancing the effectiveness and coverage of 

treatment programs is therefore essential for reducing the number of cases. Numerical 

simulations and stability analyses further demonstrated that HIV/AIDS can be effectively 

controlled through appropriate and well-implemented management strategies, particularly 

robust treatment programs. Beyond offering theoretical insights, the study also provides 

practical guidance for public health planning. By identifying the key parameters that 

influence disease transmission and control, the model offers a clear framework for designing 

targeted interventions and improving resource allocation. The findings emphasize the need to 

strengthen treatment programs and implement measures to prevent reinfection, both of which 

are critical to reducing disease prevalence. In light of these results, it is recommended that 

health authorities implement targeted efforts to lower contact rates, improve the effectiveness 

and reach of treatment programs, and develop strategies to prevent reinfection. In addition, it 
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is crucial that individuals living with HIV/AIDS adhere consistently to their treatment 

regimens to reduce the risk of transmitting the virus to others. From a public health 

perspective, unmarried individuals should be advised to avoid oral sex and adopt safe sexual 

practices, while married individuals are encouraged to remain faithful to their partners to 

prevent the spread of HIV/AIDS. Continued research should also be supported to refine the 

model and adjust strategies in response to evolving epidemiological trends. Integrating these 

findings into public health policies will help improve the management of HIV/AIDS and 

ensure more efficient use of resources. 
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