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Abstract 

In this paper, we show how the Order Completion Method for systems of nonlinear partial 

differential equations may be applied to solve first order initial value problems. In particular, 

we construct generalized solutions of a large family of such initial value problems in two 

related spaces of generalized functions. The way in which the two mentioned solution 

concepts relate to each other is discussed, as well as the basic regularity properties of 

solutions. 
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1 Introduction 

It is a widely held belief among mathematicians specializing in nonlinear partial differential equations 

(PDEs) that a general and type independent theory for the existence and basic regularity properties of 

generalized solutions of such equations is not possible. Indeed, the book [4] by I. V. Arnold starts on 

the first page with the following statement: 

"In contrast to ordinary differential equations, there is no unified theory of partial differential 

equations. Some equations have their own theories, while others have no theory at all. The 

reason for this complexity is a more complicated geometry ..." 

However, the perceived inability of mathematics to deal with PDEs in a unified way should be 

attributed to the inherent limitations of the customary, linear topological theories for the solution of 

PDEs themselves, rather than to any fundamental conceptual obstacles. 
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In this regard, let us mention only the following. A nonlinear analytic PDE will, according to the well 

known Cauchy-Kowalevskaia Theorem [11], admit an analytic solution which is defined on a 

neighborhood of any non-characteristic hyper surface on which analytic initial data is specified. 

However, outside of this neighborhood the solution may fail to exist. In particular, the solution will 

typically exhibit singularities outside the mentioned neighborhood of analyticity. On the other hand, 

the spaces of generalized functions that are typically used in the study of solutions of linear and 

nonlinear PDEs cannot deal with large classes of singularities. Indeed, due to the celebrated Sobolev 

Embedding Theorem, none of the Sobolev spaces can deal with the most simple singular functions, 

such as the Heaviside step function. 

𝐻(𝑥) = {
0  if 𝑥 < 0
1  if 𝑥 ≥ 0

 

Furthermore, Colombeau generalized functions [8], and therefore distributions as well, cannot handle 

an analytic function with an essential singularity at one single point, such as 𝑓(𝑧) = 𝑒1/𝑧. 

Recall that, due the the Great Picard Theorem in complex analysis, any analytic function with an 

essential singularity at a point 𝑐 ∈ ℂ will assume every complex number, with possibly one exception, 

infinitely many times as a value in every neighborhood of the point 𝑐. Such a singular function will 

clearly violate the polynomial type growth conditions which are, rather as a rule, imposed on 

generalized functions. 

In contradistinction with the mentioned usual methods for the solutions of PDEs, two recent theories 

provide general and type independent results regarding the existence and basic regularity properties of 

large classes. 

paces of (piecewise) smooth functions, and applies to what may be considered all continuous 

nonlinear PDEs. Furthermore, the solution so obtained satisfies a blanket regularity property. In 

particular, the solutions may be assimilated with Hausdorff continuous interval functions [3]. Based 

on the recent reformulation and enrichment of the OCM in terms of suitable uniform convergence 

spaces and their completions, the regularity properties of solutions, as well as the understanding of the 

structure of solutions, have been significantly improved, [19, 20, 21, 22]. 

Neuberger [12, 13, 14, 15] introduced a solution technique for nonlinear PDEs, which is based on a 

generalized method of Steepest Descent in suitably constructed Hilbert spaces. The underlying ideas 

uppon which the theory is based does not depend on the particular form of the PDE involved, and is 

therefore type independent. However, the relevant techniques involve several highly technical aspects 

which have, as of yet, not been resolved for a class of equations comparable to that to which the OCM 

applies. However, the numerical computation of solutions, based on this theory, has advanced beyond 

the proven scope of the underlying analytical techniques. In this regard, remarkable results have been 

obtained, see for instance [15]. 

In this paper we apply the OCM, as formulated in the context of uniform convergence spaces 

[20,21,22] to the first order nonlinear Cauchy problem 

𝐷𝑡𝑢(𝑥, 𝑡) + 𝐹(𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝐷𝑥𝑢(𝑥, 𝑡)) = 𝑓(𝑥, 𝑡), (1.1)
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−𝑎, 𝑎). (1.2)

 

Here (𝑥, 𝑡) ∈ Ω = (−𝑎, 𝑎) × (−𝑏, 𝑏) ⊆ ℝ2 for some 𝑎, 𝑏 > 0, while 
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𝐹: Ω‾ × ℝ4 ⟶ℝ 

is jointly continuous in all its variables. The initial value 𝑢0 is assumed to be 𝒞1-smooth on [−𝑎, 𝑎]. 

2 Function Spaces and their Completion 

As is shown in [19,21] the PDE (1.1) admits generalized solutions, both in the pull-back type space of 

generalized functions 𝒩ℒ𝑇
1(Ω) introduced in [19], and in the Sobolev type space of generalized 

functions 𝒩ℒ1(Ω), considered in [21]. However, such generalized solutions may fail to satisfy the 

initial condition (1.2), in any suitable generalized sense. In fact, a generalized function in 𝒩ℒ1(Ω) 

may not have a well defined trace in 𝒩ℒ(ℝ × {0}). One should note that this is not a situation 

peculiar to the OCM, but rather a typical feature of solution methods for PDEs involving singular 

objects as generalized solutions of such equations. 

The aim of this section is to introduce suitable modifications of the spaces 𝒩ℒ1(Ω) and 𝒩ℒ𝑇
1(Ω) that 

can accommodate the presence of the initial condition (1.2). The construction of these spaces, as well 

as the arguments leading to the existence of solutions presented in Section 3 , follow by the same 

methods that apply to the free problem, see [19, 21]. In this way, we come to appreciate yet another 

advantage of solving linear and nonlinear PDEs through the OCM. Namely, that initial and / or 

boundary value problems may be solved by exactly the same techniques that apply to the free 

equation (1.1). 

2.1 Function Spaces 

Let ℳℒ0
1(Ω) denote the set 

ℳℒ0
1(Ω) = {𝑢 ∈ ℳℒ1(Ω) |

∀ 𝑥 ∈ [−𝑎, 𝑎]:
 1) 𝑢,𝒟𝑥𝑢 are continuous and finite at (𝑥, 0)

 2) 𝒟𝑥𝑢(𝑥, 0) =
𝑑

𝑑𝑥
𝑢(𝑥, 0)

} , (2.1) 

while ℳℒ0
0(Ω) is defined as 

ℳℒ0
0(Ω) = {𝑢 ∈ ℳℒ0(Ω) |

∀ 𝑥 ∈ [−𝑎, 𝑎]:

𝑢 is continuous and finite at (𝑥, 0)
} . (2.2) 

Here 𝒟𝑥 denotes the differential operator defined by 

𝒟𝑥𝑢(𝑥, 𝑡) = (𝐼(𝑆(𝐷𝑥𝑢))) (𝑥, 𝑡) (2.3) 

In view of (2.1) and it is clear that the relation (2.3) defines a mapping 

𝒟𝑥:ℳℒ0
1(Ω) → ℳℒ0

0(Ω), (2.4) 

while (2.1) and (2.2) implies the inclusion 

ℳℒ0
1(Ω) ⊂ ℳℒ0

0(Ω) (2.5) 

Similarly, the expression 
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𝒟𝑡𝑢(𝑥, 𝑡) = (𝐼(𝑆(𝐷𝑡𝑢))) (𝑥, 𝑡) 

defines a mapping 

𝒟𝑡:ℳℒ0
1(Ω) → ℳℒ0(Ω), (2.6) 

The mappings (2.4) and (2.6) are extensions of the usual linear partial differential operators 𝐷𝑥 and 𝐷𝑡 

acting on spaces of smooth functions. Using these extended differential operators, we associate a 

mapping 

𝑇:ℳℒ0
1(Ω) → ℳℒ0(Ω) (2.7) 

with the PDE (1.1) through the expression 

𝑇𝑢(𝑥, 𝑡) = 𝐼 (𝑆(𝒟𝑡𝑢 + 𝐹(⋅,⋅, 𝑢, 𝒟𝑥𝑢))) (𝑥, 𝑡) 

We may note that any classical solution 𝑢 ∈ 𝒞1(Ω) of the PDE (1.1) will also satisfy equation 

𝑇𝑢 = 𝑓 (2.8) 

Thus we may view (2.8) as a first extension of the PDE (1.1). In order to also incorporate the initial 

value (1.2) into this first extension of the classical setup (1.1-1.2), we introduce the mapping 

𝑇‾:ℳℒ0
1(Ω) ∋ 𝑢 ↦ (𝑇𝑢, 𝑢∣𝑡=0) ∈ ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] (2.9) 

In view of (2.1) the mapping (2.9) is well defined. The equation 

𝑇‾𝑢 = (𝑓, 𝑢0) (2.10) 

is an extension of the initial value problem (1.1-1.2) in the following sense: Any solution 𝑢 ∈

ℳℒ0
1(Ω) of (2.10) satisfies the extension (2.8) of the PDE (1.1) as well as the initial value (1.2). In 

this way, we may view the single equation (2.10) as a generalization of the initial value problem (1.1-

1.2). Two further generalizations of the initial value problem (1.1-1.2) are obtained by extending the 

mapping (2.9) to spaces of generalized functions, the construction of which we now turn to. 

2.2 Pullback Spaces 

The general method underlying the construction of the pullback space of generalized functions 

𝒩ℒ𝑇
1(Ω) presented in [19] consists of defining the structure on the space of generalized functions in 

terms of the differential operator 𝑇. In order to deal with the initial condition (1.2), we consider the 

mapping (2.9). 

Define an equivalence relation ∼𝑇‾  on ℳℒ0
1(Ω) through the relation 

𝑢 ∼𝑇‾ 𝑣 ⇔ 𝑇‾𝑢 = 𝑇‾𝑣 (2.11) 

and denote the quotient space ℳℒ0
1(Ω)/∼𝑇‾  by ℳℒ0,𝑇‾

1 (Ω). With the mapping (2.9) we may associate 

in a canonical way an injective mapping 

𝑇̂:ℳℒ0,𝑇‾
1 (Ω) → ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] (2.12) 
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such that the diagram 

 

 

 

commutes, with 𝑞𝑇‾  denoting the canonical quotient mapping associated with the equivalence relation 

(2.11). Note that, in view of (2.13), a solution 𝑈 ∈ ℳℒ0,𝑇‾
1 (Ω) of the equation 

𝑇̂𝑈 = (𝑓, 𝑢0) (2.14) 

is in fact the equivalence class, with respect to the equivalence relation (2.11), of all solutions of 

(2.10). Thus equation (2.14) is an equivalent formulation of (2.10). Thus we consider any extension of 

(2.14) as a generalization of equation (2.10), and hence of the initial value problem (1.1-1.2). 

Consider on ℳℒ0(Ω) the uniform order convergence structure, see Definition ??, Appendix A, while 

𝒞1[−𝑎, 𝑎] is equipped with the following uniform convergence structure. 

Definition 2.1. A filter 𝒰 on 𝒞1[−𝑎, 𝑎] belongs to 𝒥u if, for some 𝑘 ∈ ℕ, we have 

∃ 𝑢1, … , 𝑢𝑘 ∈ 𝒞
1[−𝑎, 𝑎]:

∃ ℱ1, … , ℱ𝑘 filters on 𝒞1[−𝑎, 𝑎]:
 

1. ℱ𝑖 converges uniformly to 𝑢𝑖, 𝑖 = 1,… , 𝑘 

2. (ℱ1 × ℱ1) ∩ …∩ (ℱ𝑘 × ℱ𝑘) ⊆ 𝒰 

The family of filters 𝒥u on 𝒞1[−𝑎, 𝑎] × 𝒞1[−𝑎, 𝑎] is trivially seen to be a Hausdorff and complete 

uniform convergence structure. Indeed, 𝒥u is the associated uniform convergence structure, see [7, 

Proposition 2.1.7], associated with the (topological) convergence structure of uniform convergence in 

𝒞1[−𝑎, 𝑎]. 

The Cartesian product ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] carries the product uniform convergence structure 𝒥𝑜,u, 

with the components equipped with the uniform order convergence structure 𝒥𝑜 and the uniform 

convergence structure 𝒥u, respectively. That is, 

𝒰 ∈ 𝒥𝑜,u ⇔ (
1) (𝜋1 × 𝜋1)(𝒰) ∈ 𝒥𝑜
2) (𝜋2 × 𝜋2)(𝒰) ∈ 𝒥u

) . (2.15) 

Here 𝜋1 and 𝜋2 denote the projections 

𝜋1:ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] ∋ (𝑓, 𝑢) ↦ 𝑓 ∈ ℳℒ0(Ω) 

and 

𝜋2:ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] ∋ (𝑓, 𝑢) ↦ 𝑢 ∈ 𝒞1[−𝑎, 𝑎] 
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As mentioned in Appendix A, the completion of ℳℒ0(Ω) with respect to the uniform convergence 

structure 𝒥𝑜 is the space 𝒩ℒ(Ω) of all nearly finite normal lower semi-continuous functions on Ω, 

equipped with a suitable uniform convergence structure, defined in Definition ??. Thus, since 

𝒞1[−𝑎, 𝑎] is complete with respect to 𝒥u, it follows from [22, Theorem 3.2] that there exists a 

bijective uniformly continuous mapping 

𝑖♯: (ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎])♯ → 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎] (2.16) 

Here 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎] is equipped with the product uniform convergence structure, with 𝒩ℒ(Ω) 

and 𝒞1[−𝑎, 𝑎] equipped with the uniform convergence structures 𝒥𝑜
♯  and 𝒥u, respectively. In view of 

(2.16), we identify the completion (ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎])# of ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] with the set 

𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎], equipped with a suitable uniform convergence structure. However, we should 

note that the mapping (2.16) does not have a continuous inverse. Thus the uniform convergence 

structure on 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎], when viewed as the completion of ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎] does not 

carry the product uniform convergence structure. Except if otherwise mentioned, we consider 

𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎] as the completion of ℳℒ0(Ω) × 𝒞1[−𝑎, 𝑎], thus equipped with a uniform 

convergence structure other than the product uniform convergence structure. 

We equip ℳℒ0,𝑇‾
1 (Ω) with the initial uniform convergence structure 𝒥𝑇̂ with respect to the mapping 

(2.12). That is, 

𝒰 ∈ 𝒥𝑇̂ ⇔ 𝑇̂(𝒰) ∈ 𝒥𝑜,u (2.17) 

Thus the mapping (2.12) is a uniformly continuous embedding. Therefore, in view of [22, Corollary 

2.4], the unique uniformly continuous extension of 𝑇̂, 

𝑇̂♯:𝒩ℒ0,𝑇‾
1 (Ω) → 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎] (2.18) 

is injective, where 𝒩ℒ0,𝑇‾
1 (Ω) denotes the completion of ℳℒ0,𝑇‾

1 (Ω). In this way, we may identify 

𝒩ℒ0,𝑇‾
1 (Ω) with a subset of 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎], thus providing a first blanket regularity for solutions 

of the generalized equation 

𝑇̂♯𝑈♯ = (𝑓, 𝑢0). (2.19) 

Namely, any solution 𝑈♯ ∈ 𝒩ℒ0,𝑇‾
1 (Ω) of (2.19) may be assimilated with usual real nearly finite 

normal lower semi-continuous functions. Furthermore, the restriction of such a solution 𝑈♯ of (2.19), 

given by the second component of the mapping (2.18), is equal to 𝑢0, so that 𝑈♯ satisfies also the 

initial condition (1.2) in this generalized sense. 

2.3 Sobolev-type Spaces 

The main advantage of considering generalized solutions of (1.1-1.2) in the context of the pullback 

space 𝒩ℒ0,𝑇‾ (Ω) introduced in Section 2.2, is the particularly simple and transparent way in which 

one arrives as the mentioned space of generalized functions. On the other hand, the drawback of this 

method is that the structure and properties of generalized solutions, beyond the basic regularity 

properties inherent in the construction, may be lost in the construction. It may be due to several issues, 

of which we mention the following. The space of generalized functions 

is, to a good extent determined by the particular nonlinear partial differential operator 𝑇. Furthermore, 
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one encounters significant difficulties when trying to introduce additional structure, such as 

generalized derivatives, on spaces of generalized functions. These issues may be overcome by 

considering so called Sobolev-type spaces of generalized functions, the construction of which we now 

turn to. 

In this regard, we introduce a suitable uniform convergence structure on ℳℒ0
0(Ω). We should recall 

that the constructions leading to the existence of generalized solutions of systems of nonlinear PDEs 

within the context of the Order Completion Method are based on concepts of approximation in terms 

of the pointwise order relation on spaces of extended real valued functions. In particular, the notion of 

order convergence plays a fundamental role in the methods introduced in [19, 20, 21, 22]. It is 

precisely these constructions are we now adapt to the case of the initial value problem (1.1-1.2). In 

view of these remarks, we introduce the following uniform convergence structure on ℳℒ0
0(Ω). 

Definition 2.2. A filter 𝒰 on ℳℒ0
0(Ω) belongs to 𝒥1 if, for some 𝑘 ∈ ℕ, the following condition is 

satisfied: 

∀𝑗 = 1,… , 𝑘:

∃(𝜆𝑛
𝑗
), (𝜇𝑛

𝑗
) ⊂ ℳℒ0

0(Ω):

∃𝑢𝑗 ∈ 𝒩ℒ(Ω):

 1) 𝜆𝑛
𝑗
≤ 𝜆𝑛+1

𝑗
≤ 𝜇𝑛+1

𝑗
≤ 𝜇𝑛

𝑗
, 𝑛 ∈ ℕ (2.20)

 2) 𝜆𝑛
𝑗
(𝑥, 0) = 𝜇𝑛

𝑗
(𝑥, 0), 𝑥 ∈ [−𝑎, 𝑎], 𝑛 ∈ ℕ (2.20)

 3) sup{𝜆𝑛
𝑗
: 𝑛 ∈ ℕ} = 𝑢𝑗 = inf{𝜇𝑛

𝑗
: 𝑛 ∈ ℕ} (2.20)

 4) [{𝐼𝑛
1 × 𝐼𝑛

1: 𝑛 ∈ ℕ}] ∩ …∩ [{𝐼𝑛
𝑘 × 𝐼𝑛

𝑘: 𝑛 ∈ ℕ}] ⊆ 𝒰(2.20)

 

Here 𝐼𝑛
𝑗
 denotes the order interval [𝜆𝑛

𝑗
, 𝜇𝑛
𝑗
]. 

Proposition 2.3. The family 𝒥1 is a Hausdorff uniform convergence structure on ℳℒ0
0(Ω). 

Proof. We verify that 𝒥1 satisfies the axioms of a uniform convergence structure, see [7, Definition 

2.1.2]. 

(i) Consider some 𝑢 ∈ ℳℒ0
0(Ω). In Definition 2.2, set 𝑘 = 1 and 𝜆𝑛

1 = 𝜇𝑛
1 = 𝑢 for all 𝑛 ∈ ℕ. Clearly 

conditions 1) to 3) of (2.20) are satisfied, and 

[𝑢] × [𝑢] = [{𝐼𝑛
1 × 𝐼𝑛

1: 𝑛 ∈ ℕ}] 

Therefore [𝑢] × [𝑢] ∈ 𝒥1. 

(ii) Let 𝒰 and 𝒱 belong to 𝒥1, and let (𝐼𝑛
1),… , (𝐼𝑛

𝑘) and (𝐽𝑛
1),… , (𝐽𝑛

𝑙 ) be the sequences of order 

intervals associated with 𝒰, respectively 𝒱, through Definition 2.2. For 𝑗 = 𝑘 + 1,… , 𝑘 + 𝑙, set 

𝐼𝑛
𝑗
= 𝐽𝑛

𝑗−𝑘
, 𝑛 ∈ ℕ. 

Then it follows from (2.20) that 

[{𝐼𝑛
1 × 𝐼𝑛

1: 𝑛 ∈ ℕ}] ∩ …∩ [{𝐼𝑛
𝑘+𝑙 × 𝐼𝑛

𝑘+𝑙: 𝑛 ∈ ℕ}] ⊆ 𝒰 ∩ 𝒱 

Therefore 𝒰 ∩ 𝒱 belongs to 𝒥1. 

(iii) It is trivially true that if 𝒰 ∈ 𝒥1, and 𝒱 ⊇ 𝒰, then 𝒱 ∈ 𝒥1. 

(iv) According to Definition 2.2, every filter 𝒰 ∈ 𝒥1 contains a filter 𝒱 ∈ 𝒥1 which has a symmetric 

basis. That is, 𝒱−1 = 𝒱 ∈ 𝒥1. But, since 𝒱 ⊆ 𝒰, it follows that 𝒱−1 ⊆ 𝒰−1. Therefore 𝒰−1 ∈ 𝒥1. 
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(v) Consider 𝒰,𝒱 ∈ 𝒥1 with the property that 𝒰 ∘ 𝒱 exists. Let (𝐼𝑛
1), … , (𝐼𝑛

𝑘) and (𝐽𝑛
1),… , (𝐽𝑛

𝑙 ) be the 

sequences of order intervals associated with 𝒰, respectively 𝒱, through Definition 2.2. Set 

Ψ = {(𝑖, 𝑗): [{𝐼𝑛
𝑖 × 𝐼𝑛

𝑖 : 𝑛 ∈ ℕ}] ∘ [{𝐽𝑛
𝑗
× 𝐽𝑛

𝑗
: 𝑛 ∈ ℕ}] exists } 

Then, according to [7, Lemma 2.1.1 (i)], it follows that 

𝒰 ∘ 𝒱 ⊇⋂ {[{𝐼𝑛
𝑖 × 𝐼𝑛

𝑖 : 𝑛 ∈ ℕ}] ∘ [{𝐽𝑛
𝑗
× 𝐽𝑛

𝑗
: 𝑛 ∈ ℕ}]: (𝑖, 𝑗) ∈ Ψ} (2.21) 

According to [7, Lemma 2.1.1 (ii)] the inclusion (2.21) implies 

𝒰 ∘ 𝒱 ⊇⋂ {[{𝐽𝑛
𝑗
× 𝐼𝑛

𝑖 : 𝑛 ∈ ℕ}]: (𝑖, 𝑗) ∈ Ψ} (2.22) 

It follows from [7, Lemma 2.1.1 (iii)] (𝑖, 𝑗) ∈ Ψ if and only if 

∀ 𝑚, 𝑛 ∈ ℕ:

𝐼𝑛
𝑖 ∩ 𝐽𝑚

𝑗
≠ ∅

(2.23) 

Since ℳℒ0
0(Ω) is a lattice by Lemma 2.4, it follows that the sequences (𝜆𝑛

(𝑖,𝑗)
) and (𝜇𝑛

(𝑖,𝑗)
), defined 

through 

𝜆𝑛
(𝑖,𝑗)

= inf{𝜆𝑛
𝑖 , 𝜆𝑛

𝑗
}, 𝜇𝑛

(𝑖,𝑗)
= sup{𝜇𝑛

𝑖 , 𝜇𝑛
𝑗
} (2.24) 

for all (𝑖, 𝑗) ∈ Ψ, are well defined in ℳℒ0
0(Ω). Here (𝜆𝑛

𝑖 ), (𝜆𝑛
𝑗
), (𝜇𝑛

𝑖 ) and (𝜇𝑛
𝑗
) are the sequences 

defining the order intervals 𝐼𝑛
𝑖  and 𝐽𝑛

𝑗
, respectively, through (2.20). For (𝑖, 𝑗) ∈ Ψ and 𝑛 ∈ ℕ, set 

𝐼𝑛
(𝑖,𝑗)

= [𝜆𝑛
(𝑖,𝑗)

, 𝜇𝑛
(𝑖,𝑗)

]. In view of (2.24), it follows that 

∀ (𝑖, 𝑗) ∈ Ψ, 𝑛 ∈ ℕ:

𝐼𝑛
(𝑖,𝑗)

⊇ 𝐼𝑛
𝑖  and 𝐼𝑛

(𝑖,𝑗)
⊇ 𝐽𝑛

𝑗  

Therefore (2.22) implies that 

𝒰 ∘ 𝒱 ⊇⋂ {[{𝐼𝑛
(𝑖,𝑗)

× 𝐼𝑛
(𝑖,𝑗)

: 𝑛 ∈ ℕ}] : (𝑖, 𝑗) ∈ Ψ} (2.25) 

Since 𝒩ℒ(Ω) is 𝜎-distributive by [20, Proposition 4], it follows by (2.20) and (2.24) that 

∀(𝑖, 𝑗) ∈ Ψ:

 1)  sup {𝜆𝑛
(𝑖,𝑗)

: 𝑛 ∈ ℕ} = sup{𝑢𝑖, 𝑢𝑗}(2.26)

 2) inf {𝜇𝑛
(𝑖,𝑗)

: 𝑛 ∈ ℕ} = inf{𝑢𝑖, 𝑢𝑗} (2.26)

 

where 𝑢𝑖 and 𝑢𝑗 are the elements of 𝒩ℒ(Ω) associated with the sequences (𝐼𝑛
𝑖 ) and (𝐽𝑛

𝑗
), 

respectively, of order intervals through (2.20). Since 𝐼𝑛
𝑖 ∩ 𝐽𝑛

𝑗
≠ ∅ or each (𝑖, 𝑗) ∈ Ψ and 𝑛 ∈ ℕ, it 

follows that 

∀ (𝑖, 𝑗) ∈ Ψ, 𝑛 ∈ ℕ:

𝜆𝑛
𝑖 ≤ 𝜇𝑛

𝑗
, 𝜆𝑛
𝑗
≤ 𝜇𝑛

𝑗 (2.27) 
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It follows from (2.20) and (2.27) that 

𝑢𝑖 ≤ 𝑢𝑗 

and 

𝑢𝑗 ≤ 𝑢𝑖 

for all (𝑖, 𝑗) ∈ Ψ. This shows that 𝑢𝑖 = 𝑢𝑗 whenever (𝑖, 𝑗) ∈ Ψ, so that it follows from (2.26) that 

∀ (𝑖, 𝑗) ∈ Ψ:
∃ 𝑢(𝑖,𝑗) ∈ 𝒩ℒ(Ω):

sup {𝜆𝑛
(𝑖,𝑗)

: 𝑛 ∈ ℕ} = 𝑢(𝑖,𝑗) = inf {𝜇𝑛
(𝑖,𝑗)

: 𝑛 ∈ ℕ}

 

Thus it follows that 𝒰 ∘ 𝒱 belongs to 𝒥1. 

We now show that 𝒥1 is Hausdorff. In this regard, consider functions 𝑢, 𝑣 ∈ ℳℒ0
0(Ω), and a filter 

𝒰 ∈ 𝒥1. For the sake of obtaining a contradiction, we assume that 

(𝑢, 𝑣) ∈ 𝑈, 𝑈 ∈ 𝒰. (2.28) 

Let (𝜆𝑛
1 ),… , (𝜆𝑛

𝑘) be the decreasing sequences, and (𝜇𝑛
1), … , (𝜇𝑛

𝑘) the increasing sequences associated 

with 𝒰 through (2.20). It follows from the relation (2.28) that 

∀ 𝑛 ∈ ℕ:
∃ 𝑗𝑛 ∈ {1,… , 𝑘}:

𝑢, 𝑣 ∈ [𝜆𝑛
𝑗𝑛 , 𝜇𝑛

𝑗𝑛]
(2.29) 

Since each of the sequences (𝜆𝑛
𝑗
) is increasing, while all the sequences (𝜇𝑛

𝑗
) are decreasing, it follows 

from (2.29) that 

∃ 𝑗 ∈ {1,… , 𝑘}:
∀ 𝑛 ∈ ℕ:

𝑢, 𝑣 ∈ [𝜆𝑛
𝑗
, 𝜇𝑛
𝑗
]

(2.30) 

Since 

sup{𝜆𝑛
𝑗
: 𝑛 ∈ ℕ} = 𝑢𝑗 = inf{𝜇𝑛

𝑗
: 𝑛 ∈ ℕ} 

for some 𝑢𝑗 ∈ 𝒩ℒ(Ω), it follows from (2.30) that 𝑢 = 𝑢𝑗 = 𝑣. It now follows from [7, Proposition 

2.1.10] that 𝒥1 is Hausdorff. 

The proof of Proposition 2.3 requires the following lemma. 

Lemma 2.4. The set ℳℒ0
0(Ω) is a 𝜎-distributive lattice with respect to the pointwise order. 

Proof. Consider functions 𝑢, 𝑣 ∈ ℳℒ1
0(Ω), and set 

𝑤 = sup{𝑢, 𝑣} ∈ ℳℒ0(Ω) (2.31) 

We show that 𝑤 ∈ ℳℒ1
0(Ω). According to (??) it follows from (2.31) that 

𝑤(𝑥, 𝑡) = (𝐼 ∘ 𝑆)𝜑(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω (2.32) 
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where 

𝜑(𝑥, 𝑡) = sup{𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)}. (2.33) 

Since 𝑢, 𝑣 ∈ ℳℒ0
0(Ω), it follows from (2.2) and (2.33) that 𝜑(𝑥, 0) ∈ ℝ and that 𝜑 is continuous at ( 

𝑥, 0 ) for all 𝑥 ∈ [−𝑎, 𝑎]. Since 𝜑 is continuous at each point ( 𝑥, 0 ), it follows that it is both upper 

semi-continuous and lower semi-continuous at each such point. Therefore 

𝑤(𝑥, 0) = 𝐼(𝑆(𝜑))(𝑥, 0) = 𝜑(𝑥, 0) ∈ ℝ, 𝑥 ∈ [−𝑎, 𝑎]. (2.34) 

Thus it remains to show that 𝑤 is continuous at ( 𝑥, 0 ), for 𝑥 ∈ [−𝑎, 𝑎]. In this regard, we note (2.32) 

and (??) imply that 𝑤 is lower semi-continues. Hence we need only show that 𝑤 is also upper semi-

continuous at ( 𝑥, 0 ). In this regard, consider a fixed 𝑥 ∈ [−𝑎, 𝑎] and 𝑀 ∈ 𝑅‾ such that 

𝑤(𝑥, 0) = 𝜑(𝑥, 0) < 𝑀 (2.35) 

Since 𝜑 is continuous, and hence upper semi-continuous at ( 𝑥, 0 ), it follows from (2.35) that 

∃ 𝑉 ∈ 𝒱(𝑥):
∀ (𝑦, 𝑡) ∈ 𝑉 ∩ Ω:

𝜑(𝑦, 𝑡) < 𝑀
(2.36) 

Since 𝑉 ∩ Ω is open in Ω, the relation (2.36), together with the definition (??) of 𝑆 imply that 

∀ (𝑦, 𝑡) ∈ 𝑉 ∩ Ω:

𝑆(𝜑)(𝑦, 𝑡) < 𝑀
(2.37) 

Finally, it follows from (2.37) and (??) that 

∀ (𝑦, 𝑡) ∈ 𝑉 ∩ Ω:

𝑤(𝑦, 𝑡) = 𝐼(𝑆(𝜑))(𝑦, 𝑡) < 𝑀
 

so that 𝑤 is upper semi-continuous at ( 𝑥, 0 ). Since 𝑥 ∈ [−𝑎, 𝑎] is arbitrary, it follows that 𝑤 ∈

ℳℒ0
0(Ω). 

In the same way, it follows that inf{𝑢, 𝑣} belongs to ℳℒ0
0(Ω). This shows that ℒ0

0(Ω) is a sublattice 

of ℳℒ0(Ω). Since ℳℒ0(Ω) is 𝜎-distributive according to [20, Corollary 5], it follows that ℳℒ0
0(Ω) 

is also 𝜎-distributive. This completes the proof. 

Since ℳℒ0
0(Ω) is a Hausdorff uniform convergence space with respect to 𝒥1, we may construct a 

completion of ℳℒ0
0(Ω). In particular, see [23], there exists a complete Hausdorff uniform 

convergence space ℳℒ0
0(Ω)♯, and a uniformly continuous embedding 

𝜄:ℳℒ0
0(Ω) → ℳℒ0

0(Ω)♯ 

such that 𝜄(ℳℒ0
0(Ω)) is dense in ℳℒ0

0(Ω)#, with the following universal property: If 𝑌 is a complete, 

Hausdorff uniform convergence space and 

𝑇:ℳℒ0
0(Ω) → 𝑌 

is uniformly continuous, then there exists a uniformly continuous mapping 
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𝑇♯:ℳℒ0
0(Ω)♯ → 𝑌 

such that 𝑇 = 𝑇♯ ∘ 𝜄. 

We now proceed to obtain a concrete characterization of the space ℳℒ0
0(Ω)♯. In this regard, we 

characterize the Cauchy filters with respect to 𝒥1. 

Proposition 2.5. A filter ℱ on ℳℒ0
0(Ω) is a Cauchy filter with respect to 𝒥1 if and only if 

∃(𝜆𝑛), (𝜇𝑛) ⊂ ℳℒ0
0(Ω):

∃𝑢 ∈ 𝒩ℒ(Ω):(2.38)
 

1. 𝜆𝑛 ≤ 𝜆𝑛+1 ≤ 𝜇𝑛+1 ≤ 𝜇𝑛 

2. 𝜆𝑛(𝑥, 0) = 𝜇𝑛(𝑥, 0), 𝑥 ∈ [−𝑎, 𝑎], 𝑛 ∈ ℕ 

3. sup{𝜆𝑛: 𝑛 ∈ ℕ} = 𝑢 = inf{𝜇𝑛: 𝑛 ∈ ℕ} 

4. [{[𝜆𝑛, 𝜇𝑛]: 𝑛 ∈ ℕ}] ⊆ ℱ 

Proof. Let (2.38) hold. Then set 𝜆𝑛
1 = 𝜆𝑛, 𝜇𝑛

1 = 𝜇𝑛 ⊂ℳℒ0
0(Ω) and 𝑢1 = 𝑢 ∈ 𝒩ℒ(Ω). Therefore 

𝜆𝑛
1 , 𝜇𝑛

1  and 𝑢1 satisfy (2.20)(1) - (3). Furthermore, (2.38)(4) implies for each 𝑛 ∈ ℕ there exists a set 

𝐴 ∈ ℱ such that 𝐴 ⊆ [𝜆𝑛
1 , 𝜇𝑛

1 ]. This implies 𝐴 × 𝐴 ⊆ [𝜆𝑛
1 , 𝜇𝑛

1 ] × [𝜆𝑛
1 , 𝜇𝑛

1 ], which implies that 

[{[𝜆𝑛
1 , 𝜇𝑛

1 ] × [𝜆𝑛
1 , 𝜇𝑛

1 ]: 𝑛 ∈ ℕ}] ⊆ ℱ × ℱ 

Therefore by Definition 2.2ℱ × ℱ ∈ 𝒥1 for 𝑘 = 1. Thus ℱ is a Cauchy filter with respect to 𝒥1. 

Conversely, Letℱ be a Cauchy filter on ℳℒ0
0(Ω) so that ℱ × ℱ ∈ 𝒥1. Let (𝜆𝑛

1 ),… , (𝜆𝑛
𝑘) denote the 

decreasing sequences, and (𝜇𝑛
1),… , (𝜇𝑛

𝑘) the increasing sequences associated with ℱ × ℱ through 

Definition 2.2. Let 

𝜆𝑛 = inf{𝜆𝑛
1 , ⋯𝜆𝑛

𝑘} (2.39) 

and 

𝜇𝑛 = sup{𝜇𝑛
1 ,⋯ , 𝜇𝑛

𝑘} (2.40) 

Then 𝜆𝑛 is an are increasing sequence and 𝜇𝑛 is a decreasing sequence. It follows that (2.38)(1) - (2) 

hold. For fix 𝑘 ∈ ℕ, 

The following is an immediate consequence of Proposition 2.5 

Corollary 2.6. A filter ℱ on ℳℒ0
0(Ω) converges to 𝑢 ∈ ℳℒ0

0(Ω) with respect to the convergence 

structure induced by 𝒥1 if and only if 

∃(𝜆𝑛), (𝜇𝑛) ⊂ ℳℒ0
0(Ω):

 1) 𝜆𝑛 ≤ 𝜆𝑛+1 ≤ 𝜇𝑛+1 ≤ 𝜇𝑛
 2) 𝜆𝑛(𝑥, 0) = 𝑢(𝑥, 0) = 𝜇𝑛(𝑥, 0), 𝑥 ∈ [−𝑎, 𝑎], 𝑛 ∈ ℕ

 3) sup{𝜆𝑛: 𝑛 ∈ ℕ} = 𝑢 = inf{𝜇𝑛: 𝑛 ∈ ℕ}

 4) [{[𝜆𝑛, 𝜇𝑛]: 𝑛 ∈ ℕ}] ⊆ ℱ

 

We denote the convergence structure induced by 𝒥1 on ℳℒ0
0(Ω) by 𝜆1. 

The Wyler completion of ℳℒ0
0(Ω) is constructed in the following way. Denote by 𝐶[ℳℒ0

0(Ω)] the 

set of all Cauchy filters on ℳℒ0
0(Ω), and define an equivalence relation on 𝐶[ℳℒ0

0(Ω)] through 
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ℱ ∼𝐶 𝒢 ⇔ ℱ ∩ 𝒢 ∈ 𝐶[ℳℒ0
0(Ω)]. (2.41) 

We denote by ℳℒ0
0(Ω)# the quotient space 𝐶[ℳℒ0

0(Ω)]/∼𝐶. For ℱ ∈ 𝐶[ℳℒ0
0(Ω)], the equivalence 

class generated by ℱ with respect to (2.41) is denoted [ℱ]. One may identify ℳℒ0
0(Ω) with a subset 

of ℳℒ0
0(Ω)# by associating each 𝑢 ∈ ℳℒ0

0(Ω) with 𝜆1(𝑢) ⊂ 𝐶[ℳℒ0
0(Ω)]. It is an immediate 

consequence of the definition of a convergence structure [7, Definition 1.1.1] that 𝜆1(𝑢) is indeed a 

∼𝐶-equivalence class. Furthermore, since 𝜆1 is Hausdorff, the mapping 

ℳℒ0
0(Ω) ∋ 𝑢 ↦ 𝜆1(𝑢) ∈ ℳℒ0

0(Ω)♯ 

is injective. Thus we may indeed consider ℳℒ0
0(Ω) as a subset of ℳℒ0

0(Ω)♯ 

The Wyler completion of ℳℒ0
0(Ω) is the set ℳℒ0

0(Ω)#, equipped with the following uniform 

convergence structure, see for instance [17]: 

𝒰 ∈ 𝒥♯ ⇔ (

∃ 𝑛 ∈ ℕ:
∃ 𝒰1, … ,𝒰𝑛 ∈ 𝒥1

[𝒰1] ∩ …∩ [𝒰𝑛] ⊆ 𝒰
) (2.42) 

Note that each 𝒰𝑖, for 𝑖 = 1,… , 𝑘, is a filter on ℳℒ0
0(Ω) ×ℳℒ0

0(Ω), and [𝒰𝑖] denotes the filter 

generated by 𝒰𝑖 in ℳℒ0
0(Ω)# ×ℳℒ0

0(Ω)#. 

We now give a concrete description of the completion ℳℒ0
0(Ω)♯ of ℳℒ0

0(Ω) as a subset of 𝒩ℒ(Ω). 

In this regard, we introduce the space 

𝒩ℒ0(Ω) = {𝑢 ∈ 𝒩ℒ(Ω) |

∃ 𝜆, 𝜇 ∈ ℳℒ0
0(Ω)

1) 𝜆 ≤ 𝑢 ≤ 𝜇

2) 𝜆(𝑥, 0) = 𝜇(𝑥, 0), 𝑥 ∈ [−𝑎, 𝑎]

} (2.43) 

Proposition 2.7. For every ℱ ∈ 𝐶[ℳℒ0
0(Ω)], let 𝑢ℱ denote the element of 𝒩ℒ(Ω) associated with ℱ 

through (2.38). Then the mapping 

𝐶[ℳℒ0
0(Ω)] ∋ [ℱ] ↦ 𝑢ℱ ∈ 𝒩ℒ0(Ω) (2.44) 

is a bijection. 

Proof. It is clear from (2.38) and (2.43) that 𝑢ℱ ∈ 𝒩ℒ0 whenever ℱ ∈ 𝐶[ℳℒ0
0(Ω)]. We now claim 

that 

∀ℱ, 𝒢 ∈ 𝐶[ℳℒ0
0(Ω)]: (2.45)

ℱ ∼𝐶 𝒢 ⇒ 𝑢ℱ = 𝑢𝒢 (2.45)
 

In this regard, consider ℱ, 𝒢 ∈ 𝐶[ℳℒ0
0(Ω)] such that ℱ ∼𝐶 𝒢. According to (2.41) the filter ℋ = ℱ ∩

𝒢 is a Cauchy filter. Let ( 𝜆𝑛
0  ) and ( 𝜇𝑛

0  ) be the sequences associated with ℱ, and ( 𝜆𝑛
1  ) and ( 𝜇𝑛

1  ) the 

sequences associated with ℋ, through Proposition 2.5. Since ℋ ⊆ ℱ, it follows from (2.38) that 

∀ 𝑛 ∈ ℕ:
[𝜆𝑛
0 , 𝜇𝑛

0] ∩ [𝜆𝑛
1 , 𝜇𝑛

1 ] ≠ ∅
 

so that 
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∀ 𝑛 ∈ ℕ:
∃ 𝑢 ∈ ℳℒ0

0(Ω):

 1) 𝜆𝑛
0 ≤ 𝑢 ≤ 𝜇𝑛

0(2.46)

 2) 𝜆𝑛
1 ≤ 𝑢 ≤ 𝜇𝑛

1 (2.46)

 

It follows from (2.46) that 

∀𝑛 ∈ ℕ:
 1) 𝜆𝑛

0 ≤ 𝜇𝑛
1 (2.47)

 2) 𝜆𝑛
1 ≤ 𝜇𝑛

0(2.47)

 

Since (𝜆𝑛
0) increases to 𝑢ℱ, while (𝜇𝑛

1) decreases to 𝑢ℋ, it follows from (2.47) that 𝑢ℱ ≤ 𝑢ℋ. 

Similarly, we find that 𝑢ℋ ≤ 𝑢ℱ, thus 𝑢ℱ = 𝑢ℋ. In exactly the same way we may verify that 𝑢𝒢 =

𝑢ℋ. Hence 𝑢ℱ = 𝑢𝒢, which verifies (2.45). Thus the mapping (2.44) is well defined. 

We now show that the mapping (2.44) is injective. In this regard, consider ℱ, 𝒢 ∈ 𝐶[ℳℒ0
0(Ω)] such 

that 𝑢ℱ = 𝑢𝒢 = 𝑢. Let ( 𝜆𝑛
0  ) and ( 𝜇𝑛

0  ) be the sequences associated with ℱ, and ( 𝜆𝑛
1  ) and ( 𝜇𝑛

1  ) the 

sequences associated with 𝒢, through Proposition 2.5. In view of (2.38), it follows that 

𝑢 = sup{𝜆𝑛
0 : 𝑛 ∈ ℕ} = inf{𝜇𝑛

0 : 𝑛 ∈ ℕ} = sup{𝜆𝑛
1 : 𝑛 ∈ ℕ} = inf{𝜇𝑛

1 : 𝑛 ∈ ℕ} (2.48) 

Since 𝒩ℒ(Ω) is 𝜎-distributive, see [20, Proposition 3], it follows from (2.48) that the sequence ( 𝜆𝑛 ) 

defined through 

𝜆𝑛 = inf{𝜆𝑛
0 , 𝜆𝑛

1 } 

increase to 𝑢, while the sequence ( 𝜇𝑛 ) defined through 

𝜇𝑛 = sup{𝜇𝑛
0 , 𝜇𝑛

1} 

decreases to 𝑢. Furthermore, since 

[𝜆𝑛
0 , 𝜇𝑛

0] ⊆ [𝜆𝑛, 𝜇𝑛] and [𝜆𝑛
1 , 𝜇𝑛

1 ] ⊆ [𝜆𝑛, 𝜇𝑛] 

it follows that 

[{[𝜆𝑛, 𝜇𝑛]: 𝑛 ∈ ℕ}] ⊆ ℱ ∩ 𝒢. (2.49) 

Since ℳℒ0
0(Ω) is a lattice by Lemma 2.4, it follows that (𝜆𝑛), (𝜇𝑛) ⊆ ℳℒ0

0(Ω). Therefore (2.49) 

implies that ℱ ∩ 𝒢 ∈ 𝐶[ℳℒ0
0(Ω)]. Hence ℱ ∼𝐶 𝒢, which verifies that the mapping (2.44) is injective. 

We now show that the mapping (2.44) is surjective. To see that this is so, let 𝑢 ∈ 𝒩ℒ0(Ω) be 

arbitrary but fixed. According to [20, Theorem 14] there exists an increasing sequence (𝑣𝑛) ⊆

ℳℒ0(Ω) with the property that 

𝑢 = sup{𝑣𝑛: 𝑛 ∈ ℕ} (2.50) 

Using the same techniques employed in the proof of [20, Theorem 14], we may show that there is a 

decreasing sequence (𝑢𝑛) ⊆ ℳℒ0(Ω) such that 

𝑢 = inf{𝑢𝑛: 𝑛 ∈ ℕ} (2.51) 

Define the sequences ( 𝜆𝑛 ) and ( 𝜇𝑛 ) in ℳℒ0(Ω) by 
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𝜆𝑛 = sup{𝑣𝑛, 𝜆}, 𝜇𝑛 = inf{𝑢𝑛, 𝜇} (2.52) 

Since 𝒩ℒ(Ω) is 𝜎-distributive, see [20, Proposition 3], and 𝜆 ≤ 𝑢 ≤ 𝜇, it follows from (2.51) and 

(2.52) that 

sup{𝜆𝑛: 𝑛 ∈ ℕ} = sup{𝑢, 𝜆} = 𝑢 = inf{𝑢, 𝜇} = inf{𝜇𝑛: 𝑛 ∈ ℕ} (2.53) 

Furthermore, since 

𝜆 ≤ 𝜆𝑛 ≤ 𝜇𝑛 ≤ 𝜇, 𝑛 ∈ ℕ 

it follows from (2.43) that 

∀ 𝑛 ∈ ℕ, 𝑥 ∈ [−𝑎, 𝑎]:

𝜆𝑛(𝑥, 0) = 𝜇𝑛(𝑥, 0) = 𝑢(𝑥, 0) ∈ ℝ
 

Moreover, an easy computation verifies that that (2.53) implies the continuity of 𝜆𝑛 and 𝜇𝑛 at (𝑥, 0) 

for all 𝑥 ∈ [−𝑎, 𝑎]. Thus 𝑢 = 𝑢ℱ, where ℱ is the filter 

ℱ = [{[𝜆𝑛, 𝜇𝑛]: 𝑛 ∈ ℕ}]. 

This shows that the mapping (2.44) is a surjection. Thus the proof is complete. 

In view of Proposition 2.7, we can consider 𝒩ℒ0(Ω) as the completion of ℳℒ0
0(Ω) with respect to 

the uniform convergence structure 𝒥1
#. In particular, the uniform convergence structure is the initial 

uniform convergence structure with respect to the mapping (2.44) and the uniform convergence 

structure (2.42) on 𝐶[ℳ0
0(Ω)]. An explicit description of the uniform convergence structure 𝒥1

♯ on 

𝒩ℒ0(Ω) is given by the following: A filter 𝒰 on 𝒩ℒ0(Ω) ×𝒩ℒ0(Ω) belongs to 𝒥1
♯ if and only if 

∃𝑘 ∈ ℕ:
∀𝑗 = 1,… , 𝑘:

∃(𝜆𝑛
𝑗
), (𝜇𝑛

𝑗
) ⊆ 𝒩ℒ0(Ω):

∃𝑢𝑗 ∈ 𝒩ℒ(Ω):

 1) 𝜆𝑛
𝑗
≤ 𝜆𝑛+1

𝑗
≤ 𝜇𝑛+1

𝑗
≤ 𝜇𝑛

𝑗
, 𝑛 ∈ ℕ

 2) 𝜆𝑛
𝑗
(𝑥, 0) = 𝜇𝑛

𝑗
(𝑥, 0), 𝑥 ∈ [−𝑎, 𝑎], 𝑛 ∈ ℕ

 3) sup{𝜆𝑛
𝑗
: 𝑛 ∈ ℕ} = 𝑢𝑗 = inf{𝜇𝑛

𝑗
: 𝑛 ∈ ℕ}

 4) [{𝐼‾𝑛
1 × 𝐼‾𝑛

1: 𝑛 ∈ ℕ}] ∩ …∩ [{𝐼‾𝑛
𝑘 × 𝐼‾𝑛

𝑘: 𝑛 ∈ ℕ}]

 

 

Here 𝐼‾𝑛
𝑗
 denotes the set 

𝐼‾𝑛
𝑗
= {𝑣 ∈ ℳℒ0

0(Ω): 𝜆𝑛
𝑗
≤ 𝑣 ≤ 𝜇𝑛

𝑗
} 

The space ℳℒ0
1(Ω) is equipped with the initial uniform convergence structure 𝒥𝐷 with respect to the 

mappings (2.3), (2.6) and the inclusion (2.5), where ℳℒ0(Ω) carries the uniform order convergence 

structure, see Definition ??. That is, for a filter 𝒰 on ℳℒ0
1(Ω) we have 
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𝒰 ∈ 𝒥𝐷 ⇔ (

1) 𝒰 ∈ 𝒥1
2) (𝒟𝑥 × 𝒟𝑥)(𝒰) ∈ 𝒥1
3) (𝒟𝑡 × 𝒟𝑡)(𝒰) ∈ 𝒥0

) (2.54) 

In particular, a filter ℱ on ℳℒ0
1(Ω) converges to 𝑢 ∈ ℳℒ0

1(Ω) if and only if ℱ and 𝒟𝑥(ℱ) converge 

to 𝑢 and 𝒟𝑥𝑢, respectively, in ℳℒ0
1(Ω), while 𝒟𝑡(ℱ) converges to 𝒟𝑡𝑢 in ℳℒ0(Ω). 

An application of [22, Theorem 4.3] shows that the completion of ℳℒ0
1(Ω), which we denote by 

𝒩ℒ0
1(Ω), may be represented as a subset of 

𝒩ℒ1(Ω) ×𝒩ℒ1(Ω) ×𝒩ℒ(Ω). 

In particular, the mapping 

𝐃♯:𝒩ℒ0
1(Ω) ∋ 𝑢 ↦ (𝑢, 𝐷𝑥

♯𝑢, 𝐷𝑡
♯𝑢) ∈ 𝒩ℒ1(Ω) ×𝒩ℒ1(Ω) ×𝒩ℒ(Ω) (2.55) 

is injective and uniformly continuous. Here 𝒟𝑥
♯  and 𝒟𝑡

♯ are the uniformly continuous extensions of the 

mappings (2.4) and (2.6). 

In order to extend to Cauchy problem (1.1-1.2) to generalized functions in 𝒩ℒ0
1(Ω), we have to 

extend the mapping (2.9) to 𝒩ℒ0
1(Ω) in a meaningful way. In this regard, the following is the basic 

results. 

Theorem 2.8. The mapping 𝑇 is uniformly continuous. 

Proof. This follows from commutative diagram 

 

 

 

since the inclusion mapping 

𝑖:ℳℒ𝑢0
1 (Ω) ⟶ℳℒ0(Ω) 

is uniformly continuous and the nonlinear PDE operator 𝒟 is uniformly continuous. 

Theorem 2.9. The mapping 𝑇‾:ℳℒ0
1(Ω) → ℳℒ0(Ω) × 𝐶1[−𝑎, 𝑎] is uniformly continuous. 

The proof of this result is rather lengthy and technical. Furthermore, it follows essentially the same 

methods used in the proof of [21, Theorem 6]. Thus we omit it. 

In view of Theorem 2.9, there exists a unique uniformly continuous mapping 

𝑇‾ ♯:𝒩ℒ0
1(Ω) → 𝒩ℒ(Ω) × 𝒞1[−𝑎, 𝑎] (2.57) 

which extends the mapping (2.9). Any solution 𝑢 ∈ 𝒩ℒ0
1(Ω) of the equation 
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𝑇‾ ♯𝑢 = (𝑓, 𝑢0) (2.58) 

is therefore considered a generalized solution of the initial value problem (1.1-1.2). 

3 Existence of Generalized Solutions 

In this section we give our main results of existence of generalized solution to the Cauchy problem 

(1.1-1.2). 

3.1 Existence result for Pull-back spaces 

We state the approximation result which we shall use in sequel to prove existence and uniqueness of 

generalized solution to the Cauchy problem (1.1-1.2), see [19] and [21]. 

Theorem 3.1. Let 𝑓 ∈ 𝐶0(Ω‾ ). Then 

∀𝜖 > 0:
∃𝛿 > 0:
∀(𝑥0, 𝑡0) ∈ Ω:

∃𝑢 = 𝑢𝜖,𝑥0,𝑡0 ∈ 𝐶
1(Ω): (3.1)

∀(𝑥, 𝑡) ∈ Ω: (3.1)

(
|𝑥 − 𝑥0| < 𝛿

|𝑡 − 𝑡0| < 𝛿
) ⟹ 𝑓(𝑥, 𝑡) − 𝜖 < 𝑇𝑢(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡)(3.1)

 

Furthermore, 

∀𝜖 > 0:
∃𝛿 > 0:
∀𝑥0 ∈ [−𝑎, 𝑎]:

∃𝑢 = 𝑢𝜖,𝑥0 ∈ 𝐶
1(Ω): (3.2)

(𝑎)∀(𝑥, 𝑡) ∈ Ω: (3.2)

(
|𝑥 − 𝑥0| < 𝛿

|𝑡| < 𝛿
) ⟹ 𝑓(𝑥, 𝑡) − 𝜖 < 𝑇𝑢(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡)(3.2)

 (b) 𝑢(𝑥, 0) = 𝑢0(𝑥), |𝑥 − 𝑥0| < 𝛿 (3.2)

 

Proof. The proof is similar to that of [16, Lemma 8.1]. See also, [19] and [21]. 

In order to proof existence and uniqueness of solution using the above approximation result, we 

introduce a finite initial adaptive 𝛿-tiling in Ω. Given any 𝛿 > 0 one can always find at least one 

initial adaptive 𝛿-tiling in Ω, see [16, Section 8]. A finite initial adaptive 𝛿-tiling in Ω is a subset of Ω 

such that for any 𝛿 > 0 there is a finite collection 𝒦𝛿 = {𝐾𝑖}, 𝑖 = 1⋯𝑚,𝑚 ∈ 𝒩 of perfect, compact 

subsets of ℝ2 with pairwise disjoint interiors such that 

∀𝐾𝑖 ∈ 𝒦𝛿

(𝑥, 𝑡), (𝑥0, 𝑡0) ∈ 𝐾𝑖 ⟹ (
|𝑥 − 𝑥0| < 𝛿

|𝑡 − 𝑡0| < 𝛿
)

 

and 
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{(𝑥, 0):−𝑎 ≤ 𝑥 ≤ 𝑎}⋂ ( ⋃  

𝐾𝑖∈𝒦𝛿

 𝜕𝐾𝑖)  is finite.  

Our main result for this section is the following. 

Theorem 3.2. If 𝑢0 ∈ 𝐶
1[−𝑎, 𝑎] then there exist a unique solution 𝑢# ∈ 𝒩ℒ0,𝑇‾

1 (Ω) of the Cauchy 

problem (1.1-1.2) that satisfies (2.19). 

Proof. For any 𝑛 ∈ ℕ, set 𝜖𝑛 =
1

𝑛
. Then applying Lemma3.1, we have that 

∀(𝑥0, 𝑡0) ∈ Ω:

∃𝛿𝑛 > 0:

∃𝑢 = 𝑢𝑛,𝑥0,𝑡0 ∈ 𝐶
1(Ω): (3.3)

∀(𝑥, 𝑡) ∈ Ω: (3.3)

(
|𝑥 − 𝑥0| < 𝛿

|𝑡 − 𝑡0| < 𝛿
) ⟹ 𝑓(𝑥, 𝑡) −

1

2𝑛
< 𝑇𝑢(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡)(3.3)

 

and 

∀𝑥0 ∈ [−𝑎, 𝑎]:

∃𝑢 = 𝑢𝑛,𝑥0 ∈ 𝐶
1(Ω):

(𝑎)∀(𝑥, 𝑡) ∈ Ω: (3.4)

(
|𝑥 − 𝑥0| < 𝛿

|𝑡| < 𝛿
) ⟹ 𝑓(𝑥, 𝑡) −

1

2𝑛
< 𝑇𝑢(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡)(3.4)

 (b) 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [−𝑎, 𝑎], |𝑥 − 𝑥0| < 𝛿 (3.4)

 

Let 𝒦𝛿𝑛 be a finite adaptive 𝛿𝑛-tiling. For 𝐾𝑖 ∈ 𝒦𝛿𝑛, set 

𝑢𝑛
𝑖 =

{
  
 

  
 𝑢, 𝑖𝑓 (

 for any (𝑥0, 𝑦0) ∈ int(𝐾𝑖)

int(𝐾𝑖)⋂ {(𝑥, 0): 𝑥 ∈ [−𝑎, 𝑎]} = ∅

𝑢, 𝑖𝑓 (
 for any (𝑥0, 0) ∈ int(𝐾𝑖)⋂ ([−𝑎, 𝑎] ∩ {0})

int(𝐾𝑖)⋂ {(𝑥, 0): 𝑥 ∈ [−𝑎, 𝑎]} ≠ ∅

 

Now we define 𝑢𝑛 ∈ ℳℒ0
1(Ω) as 

𝑢𝑛 = 𝐼 ∘ 𝑆 (∑  

𝑚

𝑖=1

 𝜒𝑖𝑢𝑛
𝑖 ), 

where 𝜒𝑖 is the characteristic function defined with respect to the set int(𝐾𝑖). Then from (3.3), (3.4) 

we have that 

𝑓(𝑥, 𝑡) −
1

𝑛
< 𝑇𝑢𝑛(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡) (3.5) 

and 

𝑢𝑛(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [−𝑎, 𝑎] (3.6) 
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Let 𝑈𝑛 ∈ ℳℒ0,𝑇‾
1 (Ω) be the ∼𝑇‾  equivalence class generated by 𝑢𝑛. Then by (2.11), (2.12), (3.5) and 

(3.6), we see that the sequence (𝑇̂𝑈𝑛)) converges to (𝑓, 𝑢0) which implies that (𝑇̂𝑈𝑛)) is a Cauchy 

sequence in ℳℒ0(Ω) × 𝐶1[−𝑎, 𝑎]. It follows, from the fact that 𝑇̂ is uniformly continuous, that the 

sequence 𝑈𝑛 is a Cauchy sequence in ℳℒ0,𝑇‾
1 . This means that 𝑈𝑛 converges to a point 𝑢♯ ∈ 𝒩ℒ0,𝑇‾

1  

such that 𝑇̂♯𝑢♯ = (𝑓, 𝑢0). This proves the existence part. Since the mapping 𝑇̂♯ is injective, it follows 

that 𝑢♯ ∈ 𝒩ℒ10,𝑇‾  is Unique. 

3.2 Existence result for Sobolev-type spaces 

In this section we give the main existence result for Sobolev-type spaces. 

Theorem 3.3. Let 𝑢0 ∈ 𝐶[−𝑎, 𝑎]. Then there exists 𝑢♯ ∈ 𝒩ℒ0
1(Ω), a generalized solution of (1.1 - 1.2) 

such that 

𝑇‾ ♯𝑢♯ = (𝑓, 𝑢0). 

Proof. Let 𝒦𝛿 be a finite adaptive 𝛿 - tiling in Ω. Let 𝐾𝑖 ∈ 𝒦𝛿 be a fixed and arbitrary. Assume that 

for each 𝑖 ∈ ℕ, 𝒮 ∩ 𝐾𝑖 = ∅, or 𝒮 ∩ 𝐾𝑖 ≠ ∅, where 𝒮 is the non-characteristic hyperplane 

𝒮 = {(𝑥, 0): 𝑥 ∈ (−𝑎, 𝑎)} 

Then from the continuity of the function 𝑓 and the fact that the mapping 𝐹 is open and surjective [21], 

we have that 

 

∀(𝑥0, 𝑡0) ∈ 𝐾𝑖  

∃𝜉(𝑥0, 𝑡0) ∈ ℝ
4, 𝐹(𝑥0, 𝑡0, 𝜉(𝑥0, 𝑡0)) = 𝑓(𝑥0, 𝑡0): 

∃𝛿 = 𝛿𝑥0,𝑡0 , 𝜀 > 0: 

 1){(𝑥, 𝑡, 𝑓(𝑥, 𝑡))├|(|𝑥 − 𝑥_0 | < 𝛿,@|𝑡 − 𝑡_0 | < 𝛿)┤} ⊆ int{(𝑥, 𝑡, 𝐹(𝑥, 𝑡, 𝜉))├|(|𝑥 − 𝑥_0 | < 𝛿|𝑡 − 𝑡_0 |

< 𝛿,@|𝜉(𝑥, 𝑡) − 𝜉(𝑥_0, 𝑡_0 )| < 𝜀)┤}(3.7) 

 2)𝐹: 𝐵_𝛿 (𝑥_0, 𝑡_0 ) × 𝐵_2𝜀 (𝜉(𝑥_0, 𝑡_0 )) ⟶ ℝ" 𝑜𝑝𝑒𝑛.   

In particular, if we set 𝑡0 = 0 we can take 

𝜉(𝑥0, 0) =
𝑑

𝑑𝑥
𝜉(𝑥0) (3.8) 

For each point (𝑥0, 𝑡0) ∈ 𝐾𝑖, fix 𝜉(𝑥0, 0) ∈ ℝ
4 in (3.7) so that (3.8) holds at 𝑡0 = 0. Since 𝐾𝑖 is 

compact, it follows from (3.7) that 
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∃𝛿 > 0:
∀(𝑥0, 𝑡0) ∈ 𝐾𝑖
∃𝜀 = 𝜀𝑥0,𝑡0 > 0:

 1) {(𝑥, 𝑡, 𝑓(𝑥, 𝑡)) |
|𝑥 − 𝑥0| < 𝛿
|𝑡 − 𝑡0| < 𝛿

} ⊆ int {(𝑥, 𝑡, 𝐹(𝑥, 𝑡, 𝜉)) |

|𝑥 − 𝑥0| < 𝛿
|𝑡 − 𝑡0| < 𝛿

|𝜉(𝑥, 𝑡) − 𝜉(𝑥0, 𝑡0)| < 𝜀
}(3.9)

 2)𝐹: 𝐵𝛿(𝑥0, 𝑡0) × 𝐵2𝜀(𝜉(𝑥0, 𝑡0)) ⟶ ℝ open. (3.9)

 

Now let 𝒦𝛿1 = {𝐼𝑖𝑘}, 𝑘 = 1⋯ 𝑖 be a finite adaptive 𝛿-tiling of the set 𝐾𝑖 such that 𝛿1 < 𝛿 and for each 

𝑘 = 1,⋯𝑛 

𝐼𝑖𝑘 ∩ 𝒮 = ∅ (3.10) 

or 

int𝐼𝑖𝑘 ∩ 𝒮 ≠ ∅ (3.11) 

If 𝑎𝑖𝑘  with 𝑘 = 1⋯𝑛 is the center of the interval 𝐼𝑖𝑘 satisfying (3.10) then by (3.9) we haven that 

∃𝜀𝑖𝑘 > 0:

 1) {(𝑥, 𝑡, 𝑓(𝑥, 𝑡)) ∣ (𝑥, 𝑡) ∈ 𝐼𝑖𝑘} ⊆ int {(𝑥, 𝑡, 𝐹(𝑥, 𝑡, 𝜉))
(𝑥, 𝑡) ∈ 𝐼𝑖𝑘

|𝜉(𝑥, 𝑡) − 𝜉(𝑎𝑖𝑘)| < 𝜀𝑖𝑘
}(3.12)

 2) 𝐹: 𝐼𝑖𝑘 × 𝐵2𝜀𝑖𝑘
(𝜉(𝑎𝑖𝑘)) ⟶ ℝ open. (3.12)

 

If on the other hand, 𝐼𝑖𝑘 satisfies (3.11) then we set 𝑎𝑖𝑘  equal to the midpoint of 𝐼𝑖𝑘 ∩ 𝒮. We then 

obtain (3.12) by (3.9) such that (3.8) holds. 

Let 0 < 𝛾 < 1 be fixed. Then by Lemma 3.1 and (3.12) we have 

∀(𝑥0, 𝑡0) ∈ 𝐼𝑖𝑘
∃𝑈 = 𝑈𝑥0,𝑡0 ∈ 𝐶

1(Ω):

∃𝛿 = 𝛿𝑥0,𝑡0 > 0: (3.13)

 (𝑥, 𝑡) ∈ 𝐵𝛿𝑥0
(𝑥0, 𝑡0) ∩ 𝐼𝑖𝑘 ⟹ {

1)𝐷𝑡𝑈(𝑥, 𝑡), 𝐷𝑥𝑈(𝑥, 𝑡) ∈ 𝐵𝜀𝑖𝑘
(𝜉(𝑎𝑖𝑘))

2)𝑓(𝑥, 𝑡) − 𝛾 < 𝑇𝑈(𝑥, 𝑡) < 𝑓(𝑥, 𝑡)
(3.13)

 

Furthermore, if 𝐼𝑖𝑘 satisfies (3.11), then we also have that 

𝐷𝑥𝑈(𝑥, 0) =
𝑑

𝑑𝑥
𝑢0(𝑥). 

Similarly, if we let 𝒦𝛿2 = {𝐽𝑖𝑘𝑗
} , 𝑗 = 1⋯𝑘 be the finite adaptive 𝛿-tiling of the set 𝐼𝑖𝑘, such that 𝛿2 <

𝛿1 < 𝛿. Then for 𝑗 = 1,⋯𝑛 we have that 
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∀(𝑥, 𝑡) ∈ 𝐽𝑖𝑘𝑗
∃𝑈 = 𝑈𝑖𝑘𝑗

∈ 𝐶1(Ω): (3.14)

 1) 𝐷𝑡𝑈(𝑥, 𝑡), 𝐷𝑥𝑈(𝑥, 𝑡) ∈ 𝐵𝜀𝑖𝑘𝑗
(𝜉 (𝑎𝑖𝑘𝑗

))(3.14)

 2) 𝑓(𝑥, 𝑡) − 𝛾 < 𝑇𝑈(𝑥, 𝑡) < 𝑓(𝑥, 𝑡) (3.14)

 

and 

𝐽𝑖𝑘𝑗
∩ 𝒮 = ∅ (3.15) 

or 

int𝐽𝑖𝑘𝑗
∩ 𝒮 ≠ ∅ (3.16) 

If 𝐽𝑖𝑘𝑗
 satisfies (3.16), then 

𝐷𝑥𝑈(𝑥, 0) =
𝑑

𝑑𝑥
𝑢0(𝑥) 

Set 

Γ1 = Ω ∖

(

 
 
⋃ 

𝑖∈ℕ

 (⋃  

𝑖

𝑘=1

 (⋃  

𝑘

𝑗=1

 int𝑈𝑖𝑘𝑗
))

)

 
 

 

and 

𝑉1 =∑ 

𝑖∈ℕ

(∑  

𝑖

𝑘=1

 (∑  

𝑘

𝑗=1

 𝜒𝑖𝑘𝑗
𝑈𝑖𝑘𝑗

)) 

where 𝜒𝑖𝑘𝑗
 is the characteristic function of 𝐽𝑖𝑘𝑗

. The set Γ1 is closed and nowhere dense and 𝑉1 ∈

𝐶1(Ω ∖ Γ1). Furthermore, Γ1 ∩ 𝒮 is closed nowhere dense in 𝒮 and 

𝐷𝑥𝑉1(𝑥, 0) =
𝑑

𝑑𝑥
𝑢0(𝑥) ∀(𝑥, 0) ∈ 𝒮 ∖ (Γ1 ∩ 𝒮) 

From (3.13), we have 

𝑓(𝑥, 𝑡) − 𝛾 < 𝑇𝑉1(𝑥, 𝑡) < 𝑓(𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω ∖ Γ1. 

Moreover, for each 𝑖 ∈ ℕ, 𝑘 = 1,⋯ , 𝑖 and 𝑗 = 1,⋯ , 𝑘 we have 

𝑥 ∈ int𝐽𝑖𝑘𝑗
⟹ 𝜉(𝑎𝑖𝑘) − 𝜀 < 𝐷𝑉1(𝑥, 𝑡) < 𝜉(𝑎𝑖𝑘) + 𝜀 (3.17) 

Denote the functions 𝜆1, 𝜇1 ∈ 𝐶
0(Ω ∖ Γ1) as 
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𝜆1(𝑥, 𝑡) = {
𝜉(𝑎𝑖𝑘) − 2𝜀𝑖𝑘 𝑖𝑓(𝑥, 𝑡) ∈ int𝐽𝑖𝑘𝑗

 and 𝐽𝑖𝑘𝑗
∩ 𝒮 = ∅

𝐷𝑉1(𝑥, 𝑡) − 𝑜𝑖𝑘(𝑥, 𝑡) 𝑖𝑓(𝑥, 𝑡) ∈ int𝐽𝑖𝑘𝑗
 and 𝐽𝑖𝑘𝑗

∩ 𝒮 ≠ ∅
 

and 

𝜇1(𝑥, 𝑡) = {
𝜉(𝑎𝑖𝑘) + 2𝜀𝑖𝑘 𝑖𝑓(𝑥, 𝑡) ∈ int𝐽𝑖𝑘𝑗

 and 𝐽𝑖𝑘𝑗
∩ 𝒮 = ∅

𝐷𝑉1(𝑥, 𝑡) + 𝑜𝑖𝑘(𝑥, 𝑡) 𝑖𝑓(𝑥, 𝑡) ∈ int𝐽𝑖𝑘𝑗
 and 𝐽𝑖𝑘𝑗

∩ 𝒮 ≠ ∅
 

Here 𝑜𝑖𝑘𝑗
 is a real valued continuous function on ℝ such that 𝑜𝑖𝑘𝑗

(𝑥, 0) = 0 and 0 < 𝑜𝑖𝑘𝑗
(𝑥, 𝑡) <

2𝜀𝑖𝑘  (𝑥, 𝑡) ∈ Ω. Therefore it follows from (3.17) that 

𝜆1(𝑥, 𝑡) < 𝐷𝑉1(𝑥, 𝑡) < 𝜇1(𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω ∖ Γ1 

and 

0 ≤ 𝜇1(𝑥, 𝑡) − 𝜆1(𝑥, 𝑡) < 4𝜀𝑖𝑘  (𝑥, 𝑡) ∈ int𝐼𝑖𝑘 

Thus applying (3.13) and proceeding as above we can construct for each 𝑛 ∈ ℕ, a sequence of close 

and nowhere dense set Γ𝑛 ⊂ Ω, a sequence of functions 𝑉𝑛 ∈ 𝐶
1(Ω ∖ Γ𝑛) and functions 𝜆𝑛, 𝜇𝑛 ∈

𝐶0(Ω ∖ Ω𝑛) such that 

𝑓(𝑥, 𝑡) −
𝛾

𝑛
< 𝑇𝑉𝑛(𝑥, 𝑡) < 𝑓(𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω ∖ Γ𝑛, (3.18)

𝜆𝑛−1(𝑥, 𝑡) ≤ 𝜆𝑛(𝑥, 𝑡) < 𝐷𝑉𝑛 < 𝜇𝑛 ≤ 𝜇𝑛−1 (𝑥, 𝑡) ∈ Ω ∖ Γ𝑛 (3.19)
 

and 

𝜇𝑛 − 𝜆𝑛 <
4𝜀𝑖𝑘
𝑛
 (𝑥, 𝑡) ∈ (int𝐼𝑖𝑘) ∩ (Ω ∖ Γ𝑛). 

Moreover, 

𝐷𝑥𝑉𝑛(𝑥, 0) = 𝜆𝑛(𝑥, 0) = 𝜇𝑛(𝑥, 0) =
𝑑

𝑑𝑥
𝑢0(𝑥) (𝑥, 0) ∉ Γ ∩ 𝒮 

Set 𝑢𝑛 = (𝐼 ∘ 𝑆)(𝑉𝑛). Then 𝑢𝑛 ∈ ℳℒ0
1(Ω). It follows from (3.19) that the functions 𝜆‾𝑛, 𝜇‾𝑛 ⊂

ℳℒ0
0(Ω) defined as 

𝜆‾𝑛 = (𝐼 ∘ 𝑆)(𝜆𝑛), 𝜇‾𝑛 = (𝐼 ∘ 𝑆)(𝜇𝑛) 

satisfy 

𝜆‾𝑛−1 ≤ 𝜆‾𝑛 ≤ 𝒟𝑢𝑛 ≤ 𝜇‾𝑛 ≤ 𝜇‾𝑛−1 

Furthermore, we have 

𝜆‾𝑛(𝑥, 0) = 𝒟𝑥𝑢𝑛(𝑥, 0) = 𝜇‾𝑛(𝑥, 0) =
𝑑

𝑑𝑥
𝑢0(𝑥) (𝑥, 0) ∉ Γ ∩ 𝒮 (3.20) 

and 
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∃𝑢 ∈ 𝒩ℒ0 such that sup{𝜆‾𝑛: 𝑛 ∈ ℕ} = 𝑢 = inf{𝜇‾𝑛: 𝑛 ∈ ℕ}. 

Therefore the sequence {𝑢𝑛} is a Cauchy sequence in ℳℒ0
1(Ω). Moreover, (3.18) implies that {𝑇𝑢𝑛} 

converges to 𝑓(𝑥, 𝑡). It follows from (3.20) that {𝑇‾𝑢𝑛} converges to ( 𝑓, 𝑢𝑜 ) in ℳℒ0 × 𝐶1[−𝑎, 𝑎]. 

This implies that the sequence {𝑇‾ ♯𝑢𝑛} converges to ( 𝑓, 𝑢0 ). By Lemma 2.9 the mapping 𝑇‾ ♯ is 

uniformly continuous. Since 𝑢𝑛 is Cauchy, it follows that 

∃𝑢♯ ∈ 𝒩ℒ0
1:

𝑇‾ ♯𝑢𝑛 ⟶ 𝑇‾ ♯𝑢♯ = (𝑓, 𝑢0).
 

This completes the proof. 

4 Conclusion 

We have shown that the initial value problem (1.1-1.2) admits a generalized solution in the space 

𝒩ℒ0
1. Furthermore the the solution satisfies the initial condition in the sense that 

∃ 𝑘 ∈ ℕ:
∀ 𝑖 = 1⋯𝑘:

𝐷𝑖,𝑥
# 𝑢#(𝑥, 0) = 𝐷𝑖,𝑥𝑢0(𝑦), 𝑦 ∈ (−𝑎, 𝑎)

 

Moreover, the singularity set 

{(𝑦, 𝑡) ∈ Ω
∃𝑖 = 1⋯𝑘:

𝐷𝑖,𝑥
# 𝑢# is not continuous at (𝑦, 𝑡)} 

is of first Baire Category in view of property P1 in appendix. 

References 

[1] Anguelov R. Dedekind order Completion of 𝐶(𝑋) by Hausdorff continuous functions. Quaestiones 

Mathematicae 27 (2004), 152-169. 

[2]Anguelov R., Markov S. and Sendov B., The set of Hausdorff continuous functions the 

largestlinear space of interval functions. Reliable Computing 12 (2006), 337-363. 

[3]Anguelov R. and Rosinger E. E. Hausdorff continuous solution of nonlinear PDE through OCM. 

Quaestiones Mathematicae 28(3) (2005), 271-285. 

[4] Arnold V. I. Lectures on PDEs, Springer Universitext, 2004. 

[5] Baire R., Lecons sur les fonctions discontinues Collection Borel, Paris (1905). 

[6] Barbu V. and Precupanu Th., Convexity and Optimization in Banach Spaces EdituraAcademiei, 

(1986). 

[7] Beattie R. and Butzmann H.P., Convergence Struvtures and Application to Functional Analysis, 

Klummer Academic Publishers, (2002). 

53



Generalized solutions of first order nonlinear Cauchy problems 

Volume 8 Issue No 5 (2025) Access: https://gphjournal.org/index.php/m 

 

[8] Colombeau J. F. New generalized functions and multiplication of distributions, Noth Holland 

Mathematics Studies 84, 1984. 

[9] Dilworth R. P., The normal completion of the lattice of continuous functions, AMS, Translatios, 

68, (1950), 427-438. 

[10] Gähler Grundstrukturen der Analysis II, Birkhäuser Verlag, Basel (1978). 

[11] Kovalevskaia S. Zur Theorie der partiellen differentialgleichung, Journal für die reine und 

angewandte Mathematik 80 (1875) 1-32. 

[12] Neuberger J. W. Sobolev Gradients and Differential; Equations Springer Lecture Notes in 

Mathematics, Springer Berlin, 1670, (1997). 

[13] Neuberger J. W. Continuous Newton's method for polynimials Math. Intell. 21, (1999), 18 - 23. 

[14] Neuberger J. W. A Near Minimal Hypothesis Nash-Moser Theorem, Int. J. Pure Appl. Math., 4, 

(2003), 269-280. 

[15] Neuberger J. W. Prospects of a central theory of partial differential equations, Math. Intell., 

27(3), (2005), 47-55. 

[16] Oberguggenberger M. B., and Rosinger E. E. Solutions of continuous nonlinear PDEs through 

order completion North Holland, Amstardan (1994). 

[17] Preuß G., Completion of semi-uniform convergence spaces, Appl. Categ. Structures, 8, (2000), 

463-473. 

[18] Sendov B., Hausdorff Approximations Kluwer Academic, Dordrecht, (1990). 

[19] Van der walt, JH. The Order completion method for systems of nonlinear PDEs: 

Pseudotopological Perspectives. Acta Appl. Math. 103(2008), 1-17. 

[20] Van der walt, JH. The uniform order convergence structure on ℳℒ(𝑋) Quaest. Math. 31 (2008), 

55-77. 

[21] Van der walt, JH. The Order completion method for systems of nonlinear PDEs revisited. Acta 

Appl. Math. 106 (2009), 149-176. 

[22] Van der walt, JH. The completion of Uniform Convergence Spaces and an Application to 

nonlinear PDEs Quaest. Math. 32 (2009), 371-395. 

[23] Wyler Ein Komplettieringsfunktor für uniforme Limesräume, Mathematische Nacherichten 46 

(1976), 1-12. 

 

54


