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Abstract 

COVID-19, caused by the novel coronavirus SARS-CoV-2, has had a profound global impact due to its high 

transmission rate and evolving clinical profile. Understanding its spread and identifying effective intervention 

strategies remain critical for public health planning. In this study, we develop a deterministic compartmental 

model to explore the transmission dynamics of COVID-19, incorporating a fractional-order derivative to 

account for memory effects inherent in disease progression. The human population is divided into six 

epidemiological compartments: susceptible, exposed, infected, under treatment, deceased, and recovered 

individuals. To more accurately reflect the temporal and cumulative effects of infection, we applied the 

Atangana–Baleanu–Caputo (ABC) fractional-order derivative, which improves the model's capacity to capture 

long-term dependencies often overlooked in classical models. A semi-analytical solution is derived using this 

approach. Stability analysis reveals that the disease-free equilibrium is locally asymptotically stable when the 

basic reproduction number is less than one, and unstable when othrwise. Through numerical simulations, it 

showed that reducing the contact rate and enhancing treatment interventions significantly lower infection 

prevalence and increase recovery rate. The findings highlight the effectiveness of timely treatment and 

behavioral control measures in curbing COVID-19 transmission. We recommend the continued enforcement of 

public health strategies such as reducing human-to-human contact, improving treatment accessibility, and 

increasing vaccine coverage. The proposed fractional-order model provides a more realistic framework for 

studying infectious diseases with memory-driven dynamics and can be adapted for future epidemic preparedness 
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1. Introduction  

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has dramatically impacted global health systems and societies 

since its emergence. Despite widespread vaccination efforts, the virus continues to evolve, 

giving rise to new variants that challenge existing public health strategies [13][19]. The rapid 

spread and transmission dynamics of COVID-19 have necessitated continual monitoring and 

updating of vaccine formulations to maintain effectiveness against emerging strains, 

including the recent XBB.1.5 and JN.1 subvariants [8][22]. These viral evolutions have 

underscored the need for adaptive vaccination programs and real-time epidemiological 

modeling to inform public health responses [21].Vaccination remains the cornerstone in 

controlling COVID-19, with booster doses improving immunity, especially among vulnerable 

populations. Recent studies report that updated vaccines administered during the 2024–2025 

season offer improved protection against circulating variants [2][20]. However, vaccine 

uptake varies globally, influenced by public perceptions, access, and evolving guidance from 

health authorities such as the CDC [4][9]. Furthermore, the development of needle-free 

vaccine delivery systems promises to enhance acceptance and facilitate mass immunization 

efforts in the near future [18]. Scientific evidence also supports the effectiveness of single 

mRNA vaccine doses in individuals with prior infections, demonstrating flexibility in 

immunization strategies [16]. Despite these advances, COVID-19 has given rise to long-term 

health complications, commonly referred to as Long COVID. This condition encompasses 

persistent symptoms such as fatigue, respiratory issues, and organ dysfunction, which can 

severely impact quality of life [6][10][17]. Recent research has begun elucidating the 

underlying pathophysiology of Long COVID, linking it to immune dysregulation and 

vascular damage [10][17]. Addressing these long-term sequelae is critical for healthcare 

planning and resource allocation in the post-pandemic era, as the burden on healthcare 

systems persists beyond the acute phase of infection. 

The situation in Nigeria exemplifies the multifaceted challenges faced by countries in 

managing COVID-19 transmission. Socioeconomic factors, population density, and 

healthcare infrastructure influence the pandemic's trajectory, complicating containment 

efforts [21]. Modeling studies tailored to Nigeria's context have provided insights into 

transmission dynamics and the potential impact of vaccination campaigns and non-

pharmaceutical interventions [21]. These models inform policymakers in designing effective 

strategies that balance public health priorities with socioeconomic considerations. Moreover, 

localized data highlight the need for continued surveillance and targeted vaccination efforts to 

curb outbreaks and mitigate long-term impacts.The evolving landscape of COVID-19 

demands sustained scientific vigilance and public health innovation. The virus’s ability to 

mutate necessitates updated vaccines and adaptive immunization strategies [8][19]. Long 

COVID presents a growing healthcare challenge requiring focused clinical research and 

patient care initiatives [6][17]. Country-specific models, such as those developed for Nigeria, 

are essential for guiding tailored responses [21]. As vaccine technologies advance and global 

vaccination coverage improves, continued collaboration and research remain paramount to 

overcoming the COVID-19 pandemic and its lasting consequences. 

[30] formulated a fractional-order influenza model using the Atangana–Baleanu–Caputo 

(ABC) derivative to incorporate memory effects in the disease progression. The model was 

tested against weekly influenza data from Saudi Arabia, and they s compared it with models 

based on Caputo–Fabrizio and classical Caputo derivatives. The analysis involved stability 

checks and fitting the model to actual epidemic data using standard error metrics such as 
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Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The ABC-based model 

showed superior accuracy in predicting the epidemic peak and tail dynamics. The study 

concluded that incorporating the ABC derivative provided a more realistic and flexible 

framework for epidemic modeling due to its non-local and non-singular properties. [31]  

developed a SEAIR (Susceptible–Exposed–Asymptomatic–Infectious–Recovered) model 

governed by the ABC fractional derivative. The study focused on analyzing the impact of 

memory and optimal control strategies on disease transmission. They proved mathematical 

properties including existence, uniqueness, positivity, and global stability of equilibria. Using 

the Toufik–Atangana numerical scheme, they simulated various fractional orders and tested 

different control interventions applied at varying intensities. Results indicated that a lower 

fractional order prolonged the epidemic's spread, allowing interventions more time to be 

effective. The study emphasized the critical role of early and sustained optimal control 

measures in mitigating disease transmission in fractional systems. [32] presented a fractional-

order Zika virus model using a fractal ABC-Caputo derivative with a Mittag-Leffler kernel. 

The model included both human and mosquito compartments and captured the complexity of 

Zika transmission. Using fixed-point theory, the authors proved the model’s stability and 

uniqueness. Numerical experiments revealed that as the fractional order decreased, the 

infection dynamics changed substantially, with slower peaks and longer persistence of the 

virus. The results demonstrated that fractional models, particularly with the ABC-Caputo 

derivative, provided a more nuanced understanding of vector-borne disease dynamics. The 

study concluded that incorporating fractal-fractional derivatives enabled more accurate 

epidemiological predictions and informed control planning. 

[33] proposed a co-infection model that combined malaria and COVID-19 transmission 

within a single ABC fractional framework. The model consisted of several compartments, 

including human and mosquito populations. Mathematical analysis showed the existence and 

uniqueness of solutions, and reproduction numbers were derived for both diseases. Stability 

conditions were explored, and the model was simulated using a two-step Lagrange 

interpolation numerical scheme. Simulations indicated that interventions targeting one 

disease had a significant impact on the other due to shared pathways and host dynamics. It 

was concluded that ABC-based modeling of co-infections helped capture inter-disease 

feedback and could inform integrated public health strategies. The primary objective of this 

study is to develop and analyze a fractional-order deterministic compartmental model for 

COVID-19 transmission that incorporates memory effects via the Atangana–Baleanu–Caputo 

(ABC) derivative. This approach aimed to better capture the temporal dynamics of disease 

progression and assess the impact of various intervention strategies on the spread and control 

of the infection. 

2. Preliminaries 

Definition 2.1. On the interval  [0, 1], by taking the function 
1( , ), ,f H a b b a  so that

ABC  derivative is given by 
 '( )

( ) ( ) ,
1 1

ABC

a
a

Z
D f f E d






 

 
   

 

 
  

   
  

With (0) (1) 1Z Z   [24], where ( )Z   is a normalization function. 

 

Definition 2.2. [24] On the interval  [0, 1], by taking the function   
1( , ), ,f H a b b a   

which is not differentiable, hence the Atangana-Baleanu fractional derivative in Riemann-

Liouville  sense is defined as  

3



Ezugorie, I. G., Ezugorie, M. O., & Agbata, B. C. (2025). Semi-Analytical Solution of Fractional –Order Mathematical Model of COVID-
19 Via Atangana Baleanu- Caputor Derivative. GPH-International Journal of Mathematics, 8(4), 01-20. 

https://doi.org/10.5281/zenodo.15630427 

©2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics  

 

 
 '( )

( ) ( ) ,
1 1

ABC

a
a

Z d
D f f E d

d






 

 
   

  

 
  

   
  

 

Definition 2.2.The ABC  fractional derivative for the fractional integral of order   is given 

by 

 
11

( ) ( ) (y) ,
( ) ( ) ( )

AB

a
a

I f f t f y dy
 



 
 

  


  

  A  
If  0  and  1  ,  the initial function and ordinary integral are obtained, below. 

In the next sections, we will investigate the Laplace transform  operators and applied 

fundamental theorems associated with these derivatives. The connection between these 

operators and the Laplace Transform will be established. 

   
 
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( ) ( )( )
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  
  1

0

( ) ( ) (0)( )
( ) ( )

1

1
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l f l l fV

D f l

l
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



















L
L  

Theorem 2.1. [25] Consider the close interval [a, b] and use g  to represent a continuous 

function defined on it. we establish the following inequality, which is true for any  point lies 

in [a, b]: 

  0

( )
( ) ( ) ,

1

ABR V
D f f




 





 

Where  ( ) max ( ) .a bf f    

Theorem 2.2 [24]  The Riemann-Liouville and Caputo types of Atangana-Baleanu derivative 

exhibit the Lipchitz  condition, which is best defined as given below  

    0 0( ) ( ) ( ) ( ) .ABR ABRD f D g H f g 

        

And  

   0 0( ) ( ) ( ) ( ) .ABC ABCD f D g H f g 

      
 

 

3. Methodology 

3.1 Model Formulation 

In this study, a mathematical model that captures how COVID-19 spreads through a 

population by categorizing individuals into groups based on their health status or role in the 

outbreak is formulated . The model uses differential equations to track how people move 

between these groups—such as from susceptible to infected over time. This approach allows 

for a detailed simulation of the pandemic’s course and helps evaluate the potential impact of 

different public health interventions. The total human population is divided into six 
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epidemiological compartments: susceptible individuals  S(t) ,  exposed individuals E(t) ,, 

infected individuals I(t) , deceased individuals D(t) , individuals receiving treatment T(t) , 

and recovered individuals R(t) . Let    denote the recruitment rate, which adds new 

individuals to the susceptible class. The number of susceptible individuals decreases due to 

infection and natural causes at the rate   , while exposed individuals progress to the infected 

class at a rate 1 . The treatment rate and disease-induced death rate are denoted by    and 

1  respectively, where     represents the recovery rate of infected individuals, and 2   

corresponds to the burial rate of the deceased population. All compartments, except the 

deceased, are also reduced  by the natural death rate μ\mu. Based on the model descriptions 

and Figure 1, the system is governed by the following set of differential equations. 

3.2  Model Equations 

 

( ) ,
dS

S
dt

      

1( ) ,
dE

S E
dt

      

1 1( ) ,
dI

E I
dt

        

1( ) ,
dT

I T
dt

      

1 1 2 ,
dD

I T D
dt

      

.
dR

T R
dtS

                                                                                                   (1) 

 

The force of infection of the  covid-19 model in (1) is given as: 

Where 
(I D T)

N




 
  

Since fractional-order derivatives more accurately capture the dynamics of epidemiological 

patterns compared to classical derivatives, we reformulate the COVID-19 model (1) using the 

Atangana–Baleanu–Caputo (ABC) fractional derivative as follows: 

 
0 ( ) ( ) ,ABCD S S

       

 
0 1( ) ( ) ,ABCD E S E

        

 
0 1 1( ) ( ) ,ABCD I E I

          

 
0 1( ) ( ) ,ABCD T I T

        

 
0 1 1 2( ) ,ABCD D I T D

        

 0 ( ) .ABCD R T R

                                                                                (2) 

Subject to initial conditions 

5



Ezugorie, I. G., Ezugorie, M. O., & Agbata, B. C. (2025). Semi-Analytical Solution of Fractional –Order Mathematical Model of COVID-
19 Via Atangana Baleanu- Caputor Derivative. GPH-International Journal of Mathematics, 8(4), 01-20. 

https://doi.org/10.5281/zenodo.15630427 

©2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics  

 

0(0)S S , 0(0)E E , 0(0)I I , 0(0)T T , 0(0) ,D D 0(0) .R R
 

 

4. Existence and uniqueness of solutions of model  

Solving nonlinear equations is a well-known challenge in differential calculus, especially 

when dealing with complex systems like the fractional-order model explored in this study. 

Due to the model's high degree of nonlinearity, finding exact solutions becomes particularly 

difficult. Therefore, our main focus shifts to establishing whether solutions to model (2) 

actually exist and whether they are unique. To tackle this, we apply the fixed point theorem, a 

widely used mathematical tool for proving the existence and uniqueness of solutions in 

nonlinear systems [24, 25, 26]. This approach not only helps confirm the model's 

mathematical soundness but also provides deeper insights into the behavior of the system. On 

the interval q ,suppose that ( ) ( ),p K g K g  , where the Banach space ( )K g  of continuous 

real value functions is defined with the norm 

, , , , , .S E I T D R S E I T D R     
 

Where; 

  sup ( ) : ,S S g    

  sup ( ) : ,E E g    

  sup ( ) : ,I I g    

  sup ( ) : ,T T g    

  sup ( ) : ,D D g    

  sup ( ) : .R R g    

 

 
Figure 1: Schematic diagram for the covid-19 model  

The model (2)  is transformed into the following equation by taking the Atangana-Baleanu 

fractional-order derivatives.  
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                                     (3) 

Simplifying (3), we have  

    1 ,,K S S  
 

 
 2 1, ( ) ,K E S E     

 

 
 3 1 1, ( ) ,K I E I       

 

 
 4 1, ( ) ,K T I T     

 

 
 5 1 1 2, ,K D I T D     

 

 
 6 , .K R T R   

 
Theorem 4.1.If the aforementioned inequality holds: 

 

0 1, for 1,2,3, ..., 6i i    

Then the kernels 1 2 3 4 5 6, , , , ,k k k k k k  satisfy the Lipschitz condition and hence, a contradiction 

Proof. 

By taking the kernel    1 , S S   . Let S  and 1S be any two functions, so that : 
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     11 1 1 1, ( ) , ( ) S S S SS S             
 

 
  1( ) ( )S S      

 

 1( ) ( )
I D T
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
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   
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N N N

  
     


 


    
 

 

   3 4 5 1( ) ( )M M M S S       
 

  1 1( ) ( )S S   
 

 31 4 5M M M        

Where; 1 max ( ) ,JM S 
2 max ( ) ,JM E  3 max ( ) ,JM I 

4 max ( ) ,JM T 
 

 5 max ( ) ,JM D  6 max ( ) .JM R 
 

 are bounded functions, we have 
 

   1 1 1 1 1, ( ) , ( ) ( ) ( )SS S S         
 

Thus 1 satisfied the Lipschitz  condition, and if 10 1,  then it is also a contraction for 1 . 

Similarly, the Lipschitz  condition is satisfied by other kernels: 

    2 2 1 2 1, ( ) , ( ) ( ) ( ) ,E EE E          
 

 
   3 3 1 3 1, ( ) , ( ) ( ) ( ) ,I II I          

 

 
   4 4 1 4 1, ( ) , ( ) ( ) ( ) ,T TT T          

 

 
   5 5 1 5 1, ( ) , ( ) ( ) ( ) ,D DD D          

 

 
   6 6 1 6 1, ( ) , ( ) ( ) ( ) .R RR R          

 
By considering  the kernel for the model into account,  we write (3) as follows : 

     1 1

1

0

1
( ) (0) , y, ,

( ) ( ) ( )
S S S y S dy




 

  



 


   

 A A
 

     
1

2 2
0

1
( ) (0) , y, ,

( ) ( ) ( )
E E E y E dy




 

  



 


   

 A A
 

     
1

3 3
0

1
( ) (0) , y, ,

( ) ( ) ( )
I I I y I dy




 

  



 


   

 A A
 

     
1

4 4
0

1
( ) (0) , y, ,

( ) ( ) ( )
T T T y T dy




 

  



 


   

 A A
 

     
1

5 5
0

1
( ) (0) , y, ,

( ) ( ) ( )
D D D y D dy




 

  



 


   

 A A
 

     
1

6 6
0

1
( ) (0) , y, .

( ) ( ) ( )
R R R y R dy




 

  



 


   

 A A
               (4) 

Therefore, presenting (4) recursively yields 
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      1 1

1

1 1
0

1
( ) , y, ,

( ) ( ) ( )
v v vS S y S dy

 
  

 







 


   

 A A
 

      
1

2 1 2 1
0

1
( ) , y, ,

( ) ( ) ( )
v v vE E y E dy

 
  

 







 


   

 A A
 

     
1

3 1 3 1
0

1
( ) , y, ,

( ) ( ) ( )
v v vI I y I dy

 
  

 







 


   

 A A
 

     
1

4 1 4 1
0

1
( ) , y, ,

( ) ( ) ( )
v v vT T y T dy

 
  

 







 


   

 A A
 

     
1

5 1 5 1
0

1
( ) , y, ,

( ) ( ) ( )
v v vD D y D dy

 
  

 







 


   

 A A
 

     
1

6 1 6 1
0

1
( ) , y, .

( ) ( ) ( )
v v vR R y R dy

 
  

 







 


   

 A A
 

Subject to the initial conditions: 

0 ( ) (0)S S  , 0( ) (0)E E  , 0 ( ) (0)I I  , ( ) (0)T T  , ( ) (0),D D  0( ) (0)R R 
 

The system (5) is obtained by using the initial conditions and considering the  difference 

between the successive terms.  

 

   

      

1 1 1 2

1 1 1 2
0

1

1

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v S S S S

y S S dy
 


      

 





 
  

  



 

 


  

  
 

A

A

 

 

   

      

1 2 1 2 2

1

2 1 2 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v E E E E

y S E dy
 


      

 





 
  

  



 

 


  

  
 

A

A

 

 

   

      

1 3 1 3 2

1

3 1 3 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v I I I I

y I I dy
 


      

 





 
  

  



 

 


  

  
 

A

A

 

 

   

      

1 4 1 4 2

1

4 1 4 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v T T T T

y T T dy
 


      

 





 
  

  



 

 


  

  
 

A

A

 

 

   

      

1 5 1 5 2

1

4 1 4 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v D D D D

y D D dy
 


      

 





 
  

  



 

 


  

  
 

A

A
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   

      

1 6 1 6 2

1

6 1 6 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v v

v v

v R R R R

y R R dy
 


      

 





 
  

  



 

 


  

  
 

A

A

           (5) 

Where: 

 
1

( ) ( ),
v

v i

i

S  


   

 
1

( ) ( ),
v

v i

i

E  


   

 
1

( ) ( ),
v

v i

i

I  


   

 
1

( ) ( ),
v

v i

i

T  


   

 
1

( ) ( ),
v

v i

i

D  


   

 
1

( ) ( ).
v

v i

i

R  


                                                                            (6) 

By considering the triangular inequality of equation (5). After applying the norm to equation 

(6), the equation is transformed into (7) 

 
1( ) ( ) ( )v v vS S      

     1 1 21

1
, ,

( )
v vS S


 


  


 

A
 

        11

1

1 2
0

, ,
( ) ( )

v vy S S dy





  
 




   
 A

       (7) 

As the Lipschitz condition  is satisfied by the kernel, the following equations hold: 

 
1

1 1 1 2 1 1 2
0

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
v v v v v vS S S S y S S dy

 
        

  



    


     

 A A

 

and 

 
1

2 1 2 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  



 


     

 A A
                         

(8) 

Similarly, we have the following results : 

  
1

3 1 3 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  



 


     

 A A
 

  
1

4 1 4 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  



 


     

 A A
 

  
1

5 1 5 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  



 


     

 A A
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  
1

6 1 6 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  



 


     

 A A
 

Theorem 4.2. The COVID-19 model (2) with the  ABC fractional order derivative has a  

unique solution if  max
 
 satisfies the following condition 

max1
1, 1,2, . . .,6.

( ) ( ) ( )
i i for i


 

  


  

A A  
Proof. 

It clear that ( ), ( ), ( ), ( ), ( ), ( )S E I T D R      are bounded and the kernel of these 

functions also satisfied the Lipsachitz condition. Hence applying the succeeding relation with 

the application of equation (8) yields   

 max
1 1

1
( ) (0) ,

( ) ( ) ( )

v

v S


  
  

 
   

 A A
 

 max
2 2

1
( ) (0) ,

( ) ( ) ( )

v

v E


  
  

 
   

 A A
 

 max
3 3

1
( ) (0) ,

( ) ( ) ( )

v

v I


  
  

 
   

 A A
 

 max
4 4

1
( ) (0) ,

( ) ( ) ( )

v

v T


  
  

 
   

 A A
 

 max
5 5

1
( ) (0) ,

( ) ( ) ( )

v

v D


  
  

 
   

 A A
 

 max
6 6

1
( ) (0) .

( ) ( ) ( )

v

v R


  
  

 
   

 A A
 

Hence, since  equation (6) is a smooth function and it exists. 

 1( )( ) (0) ( ) ( )v vS S S      

 2( )( ) (0) ( ) ( )v vE E E      

 3( )( ) (0) ( ) ( )v vI I I      

 4( )( ) (0) ( ) ( )v vT T T      

 5( )( ) (0) ( ) ( )v vD D D      

 6( )( ) (0) ( ) ( )v vR R R      

 The term ( ) 0   at infinity 

          
1

1 1 1
0

1 1 1

1
( ) , , , ,

( ) ( ) ( )
v vS S y S S dy

 
     

 
   





  


     

 A A

         
1

1 1 1
0

1 1 1

1
( ) , , , ,

( ) ( ) ( )
v vS S y S S dy

 
     

 
   





  


     

 A A
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1 1 1 1

1

( ) ( ) ( )
v v vS S S S

 
 

  
 


   

A A
 

By recursively repeating  the process, yields  

 

1

1 1

1
( )

( ) ( ) ( )

v

vM
 

  
  





 
   

 A A
 

Apply max , we have 

 

1

max
1 1

1
( )

( ) ( ) ( )

v

vM


  
  





 
   

 A A
 

Taking the limit on both sides as ,v   we havs ( ) 0   

4.1  Uniqueness of Solution 

Showing that the system has a unique solution is an important part of understanding how it 

behaves. To explore this, we use the idea of contraction and assume, for the sake of 

argument, that there might be a second possible solution to system (2). 

1 1 1 1 1 1( ), ( ), ( ), ( ), ( ), ( )S E I T D R       

           
1

11 1
0

11 1 1

1
( ) ( ) , , , , (9)

( ) ( ) ( )
S S S S y S S dy




 

        
  


     

 A A

Applying the norm to equation  (9) 

         
1

1

1 1 1 1
0

1 1

1
( ) ( ) , , , , ,

( ) ( ) ( )
S S S S y S S dy

 
      

  
  


     

 A A

Applying the kernel’s  Lipchitz conditional properties, obtain  

 1
1 1 1

1
( ) ( ) ( ) ( ) ,

( ) ( ) ( )
S S S S

 
    

  


   

A A
 yields 

 1
1 1

1
( ) ( ) 1 0,

( ) ( ) ( )
S S

 
  

  

 
    

 A A
 

1 1( ) ( ) 0 ( ) ( )S S S S        

Hence , the system has a unique solution. Similarly, the above result can be obtained for 

various solutions of ( ), ( ), ( ), ( ), ( ).E I T T R      
 

4.2 The Basic Reproduction Number  0R  

The basic reproduction number  0R , often referred to as represents the average number of 

new infections generated by a single individual with COVID-19 during their infectious 

period, assuming the entire population is susceptible. This key metric helps assess how 

contagious the disease is under ideal conditions. To determine  0R  we apply the next-

generation matrix method to our dynamical system, as outlined in [23, 35]. Using this 

approach, we derive the following expression for the basic reproduction number: 

  1

0R FV   where  is the dominant eigenvalue of 1FV   
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0

0 0 0 0

0 0 0 0

0 0 0 0

F

   
 
 
 
 
 

,

1

1 2

1 2 1

3

0 0 0

0 0

0

0 0

K

K
V

K



  



 
 

 
  
 

 

, 

 

1 1 3 1 31 1 1

2 2 2 2 31 2 1 2 3 1 2 3 2 2 3 1 2 3

1

( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

K K K K K K

K K

KK K K K K K K K

FV

      





 

   




 
 
 
 
 
 


 
  











 

 

 

Where 1 1 2 1 3( ) ( )K K K          1( )   

4.3  Local Asymptotic Stability of the DFE of the Model 

In dynamical system modeling, local stability refers to how a system behaves in the vicinity 

of an equilibrium or steady state [22, 23]. Analyzing local stability is essential for 

understanding whether small disturbances will fade away or grow over time near that point. 

This type of analysis plays a vital role across multiple disciplines, including physics, biology, 

economics, and engineering. 

Theorem 4.3 

The disease-free equilibrium point of the model is locally asymptotically stable (LAS) if 

0 1R  , and unstable if 0 1R  . 

Proof 

 

To determine the local stability of the disease-free equilibrium, the Jacobian matrix is 

employed. 

 

 

1

1 2

0

1 2 1

3

0 0

0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

K

K
J

K

   

  




  



 

    
 


 
 

  
 

 
 

 

 

 

As the first and last columns contain only their respective diagonal entries, the matrix can be  reduce 

 0J  to 

 1 2 3 1 3 2

0

1 2 2

1

3

R
K

K

K

K

K

  



   


 

13



Ezugorie, I. G., Ezugorie, M. O., & Agbata, B. C. (2025). Semi-Analytical Solution of Fractional –Order Mathematical Model of COVID-
19 Via Atangana Baleanu- Caputor Derivative. GPH-International Journal of Mathematics, 8(4), 01-20. 

https://doi.org/10.5281/zenodo.15630427 

©2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics  

 

  

1

1 2

1 0

1 2 1

3

0 0

0

0 0

K

K
J

K

  




  



 
 


 
 
 

 

 

The characteristics polynomial of  1 0J  is given below  

   

 

   

4 3 2

3 2 2 1 2 1 3 1 2 1 3 2 2 2 3 2

3 1 2 1 2 3 1 2 2 1 3 2 2

1

1 1 1 1

1 1

3 2

1 2 3 1 3 2 1 2 2 3

4 3 2

3 2 2 1

1 1

1 2 1 3 1 2 1 3 2 2 2 3 2

K K K K K K K K K K K K

K K K K K K K K K K

K K K K K

K K K K K K K K K K K K

       

         

    



   

    

     

 

 



           

        

    

           

  

 

   

3 1 2 1 2 3 1 2 2 1 3 2 2 3 2

1 2 3 1 3 2

1 2 2 3

2 1 2 3

4 3 2

3 2 2 1 1 2 1 3 1 2 1 3 2 2 2 3 2

3 1 2 1 2 3 1 2 2 1 3

1 1 1 1

1

1 1 1 31 2 2

1

K K K K K K K K K K

K K
K K K

K K K

K K K K K K K K K K K K

K K K K K K K K K K

         

   




       

        

   



   

      

 

           

     

   
 


 





ò

 

 

2

1 2 2 3 01K K K R



 

 

Employing the Routh-Hurwitz method on the characteristic polynomial [6], we determine that  

 01 0R   

 0 1R   

Based on the analysis conducted using the Jacobian matrix and the application of the Routh-

Hurwitz stability criterion to the characteristic polynomial, it is established that all the 

eigenvalues associated with the linearized system at the disease-free equilibrium (DFE) have 

negative real parts. This implies that small perturbations or deviations from the DFE will 

decay over time, and the system will return to its equilibrium state [27, 28, 29]. Therefore, the 

disease-free equilibrium point of the proposed model is locally asymptotically stable, 

indicating that in the absence of external disturbances or reinfections, the infection will 

eventually be eradicated from the population. 

 

5.0 Numerical Simulations. 

Table 2.  Parameter used for simulations  

Parameter       Value Source 

  10000

59 365
 

Estimated  

  0.5500 Assumed 

  0.6000 [23] 
  0.106 Assumed 

1  0.150 [23] 

1  0.25 Assumed 

2  0.2000 [23] 

  0.9700 [23] 
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Fig 3: Basic reproduction number contour plot 
 

 

(a) Simulation of infected Humans 

with Covid-19 

 

(b) Simulation of treated  Humans 

with Covid-19 

 
Fig 4:   Effect of  on  I t and  T t

 

 

 

(a) Simulation of infected Humans 

with Covid-19 

 

(b) Simulation of treated  Humans with 

Covid-19 

(c)  

 

 

Fig 5:   Effect of 1 on  S t and  E t
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Figure 3a shows the surface plot of 0R  as a function of the progression rate 1 and the 

contact rate . As  increases in the plot, 0R increases as well, since more frequent contacts 

lead to more opportunities for transmission. As 1  increases, 0R  also increases because 

individuals that progress to the infectious stage more quickly, contributing to more secondary 

cases. The contour lines in this plot likely slope upward to the right, indicating that 

simultaneous increases in both  and 1  lead to an even higher 0R . If both parameters are 

high, the disease spreads more quickly in the population. Figure 3b depicts how 0R depends 

on the treatment rate  and the disease-induced death rate 1 . as increases, 0R  decreases in 

the plot, as more treatment means infected individuals are removed from the infectious pool 

more quickly, reducing transmission. as 1 increases, 0R  also decreases because deaths 

remove infectious individuals from the population, limiting further spread. In the plot, the 

contour lines likely slope downward to the right, showing that higher values of either  or 1  

correspond to a reduced value of 0R . If both parameters are high, the disease’s potential to 
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Fig 7: covid-19 cumulative new cases  
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spread is even lower. Figure 4 illustrates the number of infected individuals over time. At 

lower treatment rate, the infection curve rises sharply, indicating a rapid and uncontrolled 

spread of the disease. The number of infected people reaches a high peak before gradually 

declining, likely due to natural recovery, the development of immunity, or the depletion of 

susceptible individuals. As the treatment rate increases, the peak becomes noticeably lower 

and occurs earlier, demonstrating that timely and effective treatment can disrupt the 

transmission chain. At sufficiently high treatment rates, the infection curve flattens 

significantly, suggesting that most infected individuals are quickly moved into the treated 

class before they can further spread the disease. 

The second part of Figure 4 depicts the treated population. At low treatment rates, the number 

of treated individuals increases slowly and reaches only a modest peak. However, with higher 

treatment rate, this number grows more rapidly and reaches higher values. This reflects more 

efficient identification and treatment of infected individuals, reducing the disease burden. 

Notably, for higher treatment rates, the treated population peaks earlier and at greater levels, 

indicating a quicker and more effective response by the healthcare system or treatment 

intervention modeled. Figure 5a shows that as the progression rate ( 1 ) increases, the 

susceptible population declines more rapidly. This is because individuals transition more 

quickly from the exposed class to the infected class, accelerating the depletion of the 

susceptible population as the infection spreads more efficiently. Figure 5b demonstrates that 

an increase in the progression rate ( 1 ) results in a sharper and more pronounced peak in the 

exposed population. The rapid transition from exposure to infection causes the exposed group 

to peak earlier and decline faster. In Figure 6a, the graph of deceased individuals reveals that 

higher progression rates accelerate the growth of this group. This is due to the faster 

transition into the infected class, leading to more individuals reaching the stage where death 

can occur, and doing so both sooner and in larger numbers. Figure 6b, which shows the 

recovered population, follows a similar trend to the infected class: a higher progression rate (

1 ) leads to a quicker rise in recoveries. Since more individuals become infected sooner, the 

recovery process also begins earlier and peaks more rapidly. Finally, Figure 7 presents the 

graph of cumulative new cases. As the progression rate ( 1 )  increases, the curve becomes 

steeper and peaks earlier. This reflects a more intense and abrupt outbreak, as the faster 

movement from exposure to infection accelerates the rate at which new cases are recorded. 

Conclusion 
This study presents  a fractional-order compartmental model using the Atangana–Baleanu–

Caputo derivative to analyze the transmission dynamics of COVID-19. By incorporating 

memory effects, the model provided a more realistic representation of the disease's 

progression compared to classical integer-order models. Stability analysis confirmed that the 

disease-free equilibrium is locally asymptotically stable when the basic reproduction number 

is less than one. Numerical simulations demonstrated that reducing the contact rate and 

enhancing treatment accessibility significantly decreased infection levels and boosted 

recovery rates. The findings underscore the critical importance of early intervention, 

behavioural controls, and accessible treatment in managing the spread of COVID-19. The 

proposed model not only offers valuable insights into current pandemic control but also 

serves as a robust framework for addressing future infectious disease outbreaks characterized 

by memory-dependent dynamics. 
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