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Abstract 

In this study we examine the epidemiological features of chlamydia infection using a 

fractional-order mathematical model, evaluating the impact of vaccine and therapy on the 

dynamics of disease transmission. In the fractional-order framework, the study determines the 

existence and uniqueness of solutions and uses the Lyapunov function approach to examine 

the stability of the endemic equilibrium. Numerical simulations that employ the fractional 

Adams–Bashforth–Moulton approach show how fractional-order values and model 

parameters impact the control and spread of the disease. More simulations, such as surface 

and contour plots, show that a higher prevalence of chlamydia is a result of increased contact 

rates and decreased treatment effectiveness. The results highlight how the infection's spread 

within the community can be successfully stopped by improving vaccine and treatment plans. 

 

Keywords and phrases: Chlamydia, Fractional, Adam-Bashforth-Moulton, Transmission, 

Control, strategies. 

 

1.0 Introduction 

Chlamydia trachomatis is the most prevalent sexually transmitted infection (STI) globally [1], 

with an estimated 129 million cases reported in 2020 [1][2]. This bacterial infection is 

primarily transmitted through sexual contact, including vaginal, anal, and oral sex with an 

infected individual. Non-sexual transmission can also occur via direct hand-to-hand contact, 

sharing clothes, bedding, or towels, or through flies exposed to infectious nasal or eye 

secretions. In rare cases, the infection can lead to conjunctivitis. Importantly, Chlamydia 

trachomatis is a major global cause of blindness [3]. 
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The infection affects both genders but is more common in women, with prevalence rates of 

4.2% in females and 2.7% in males [4,5]. Adolescents and young adults, particularly sexually 

active women aged 15 to 24, are at the highest risk [6]. In women, the infection can harm the 

throat, rectum, and cervix, often resulting in pelvic inflammatory disease (PID), infertility, 

ectopic pregnancies, or miscarriages [7,8]. It can also be transmitted from an infected mother 

to her newborn during vaginal delivery [6].Symptoms in women may include unpleasant-

smelling vaginal discharge, itching, burning, bleeding, abdominal pain, and fever. Men may 

experience painful urination, swollen testicles, and penile discharge. The incubation period 

typically ranges from 7 to 20 days. While Chlamydia infections are treatable with antibiotics 

such as azithromycin or doxycycline, abstaining from sexual activity during treatment is 

crucial to prevent further transmission. However, re-infection is possible even after 

successful treatment [9]. 

Mathematical modeling plays a crucial role in understanding the transmission dynamics of 

infectious diseases such as Chlamydia. These models help identify the key factors driving 

epidemics and assist in developing effective control strategies. While conventional models 

have been extensively utilized, they often fail to account for memory effects or the long-term 

dependencies characteristic of biological processes. To address this limitation, fractional-

order models have emerged as a valuable alternative. These models incorporate non-local 

properties, enabling the inclusion of memory effects and anomalous diffusion in the study of 

disease transmission [10]. 

Fractional differential equations (FDEs) extend traditional integer-order models, offering a 

more versatile framework for modeling complex systems. This research introduces a 

fractional-order mathematical model to describe the transmission dynamics of Chlamydia, 

incorporating treatment and prevention measures as control strategies. By leveraging the 

memory effect characteristic of fractional calculus, the model provides a more accurate 

representation of the disease's spread. Through simulations of various intervention scenarios, 

the study seeks to determine the most effective methods for reducing Chlamydia prevalence 

and ensuring sustainable infection control. 

Fractional derivatives, which capture memory and hereditary characteristics in biological 

systems, provide significant advantages in modeling diseases such as Chlamydia. They allow 

for a more comprehensive analysis of infection progression over time and the impact of 

individuals' infection and treatment histories on transmission dynamics. This nuanced 

approach supports the design of more realistic and effective control strategies, tackling 

enduring issues like drug resistance, re-infection, and constraints in healthcare resources. 

Recent advancements in fractional calculus, as emphasized by Atokolo et al. [11], have 

highlighted its effectiveness in describing the dynamic behavior of various systems. Unlike 

classical integer-order models that primarily address local properties, fractional-order models 

capture global system behavior, including memory effects. These models are not only more 

realistic but also better suited for real-world applications, making them invaluable for 

understanding and controlling the spread of infectious diseases like Chlamydia. 

In biological contexts, fractional derivatives such as the Caputo and Riemann-Liouville 

derivatives, which have singular kernels, are widely used. Non-singular kernel derivatives, 
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such as the Mittag-Leffler and Atangana-Baleanu operators, have also gained popularity for 

their enhanced applicability. 

Atokolo et al. [11] proposed a fractional-order Sterile Insect Technology (SIT) model for 

controlling Zika virus transmission, employing the LADM technique to derive infinite series 

solutions converging to exact values. Similarly, Atokolo et al. [12] analyzed Lassa fever 

dynamics using a fractional-order model with a power-law derivative to examine the impacts 

of vaccination and treatment on disease spread. 

Other notable studies include Yunus et al. [13], who used a Caputo fractional-order derivative 

to model COVID-19 control in Nigeria, revealing higher recovery rates under integer-order 

scenarios due to vaccination and treatment. Omede et al. [14] developed a Caputo-based 

fractional-order compartmental model for soil-transmitted helminth infections, demonstrating 

greater solution flexibility using LADM. 

Amos et al. [15] created a fractional model for hepatitis C transmission, utilizing the Adams-

Bashforth-Moulton method to show that reducing contact rates and improving treatment 

significantly curtailed disease spread. James et al. [16] and Abah et al. [17] employed similar 

fractional approaches for studying HIV/AIDS and Diphtheria, respectively, showcasing the 

superior adaptability of fractional models compared to classical methods. 

Additionally, Ahmed et al. [18] developed an ABC-fractional order model for HIV and 

COVID-19 co-epidemic dynamics, while Smith et al. [19] reviewed the co-infection 

dynamics of hepatitis C and COVID-19, identifying key methods and research gaps. Ullah et 

al. [20], as cited by Das et al. [21], applied a hybrid Laplace transform and Adomian 

Decomposition Method to address fuzzy Volterra integral equations, advancing the 

theoretical framework of fuzzy analytical dynamic equations. 

The advantages of fractional-order models lie in their flexibility and ability to capture non-

local effects. Unlike classical derivatives, fractional derivatives more accurately approximate 

real-world phenomena, account for memory effects, and incorporate non-local interactions—

features often absent in integer-order models. These properties make fractional differential 

equations a powerful tool for addressing complex problems in infectious disease modeling 

and beyond. 

Ali et al. [22] investigated the stability and existence of solutions for a three-point boundary 

value problem, focusing on various types of Ulam stability. Their study utilized classical 

nonlinear fractional methods to analyze the problem, offering significant contributions to the 

field. 

The primary objectives of this paper are as follows: 

 Establish conditions that guarantee the existence and uniqueness of solutions for the 

proposed fractional-order model. 

 Conduct a stability analysis of the endemic equilibrium point using the Lyapunov 

function method. 
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 Obtain numerical solutions through the fractional Adams–Bashforth–Moulton 

method. 

 Perform numerical simulations to assess the model's behavior. 

A review of existing literature on mathematical models and transmission dynamics of 

Chlamydia highlights a gap in studies employing fractional calculus alongside the Adams–

Bashforth–Moulton method to simulate and analyze Chlamydia transmission and control 

strategies. 

The structure of this paper is as follows: Section 2 presents the formulation of the 

mathematical model, Section 3 focuses on its analytical properties, Section 4 showcases 

numerical results for the fractional-order model, and Section 5 concludes with a summary and 

key observation. 

1.1Preliminary 

This section offers an overview of essential concepts and fundamental results from fractional 

calculus. The analysis utilizes both right and left fractional Caputo derivatives, adhering to 

the frameworks proposed by [23,24]. Furthermore, the discussion underscores the practical 

applications of fractional calculus in solving real-world problems across diverse fields such 

as physics, engineering, biomathematics, and other scientific disciplines. 

Definition 1: Let  Rf   then the left and right Caputo fractional derivative of the 

function  is given by  

     0

n

nC

t t

d
D f t t D f t

dt

  
  

      

 

 
 

    1

0

1
t

nC n

tD f t t f d
n

   


 
 
                                               (1) 

The same way  

     
n

nC

t T

d
D f t D f t

dt

  
  

      

 

 
 

 
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1
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nn T

C n

T

t

D f t t f d
n



   


 


 
    

Definition 2: The generalized Mittag-Leffler function  xE  ,  for Rx  is given by   

 ,

0 ( )

n

n

x
E x

n
 

 






 

 , , 0   (2) 

which can also be represented as  

f
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     
, ,

1
x

E x xE     
 


                                                                  (3) 

 
 

1

, , t

S
E x L t E

S


 


     






  
   

         (4) 

Proposition 1.1. 

Let     RCRf  

and , 1 ,R n n      

therefore, the conditions given below holds: 

1.    
0

C

t tD I f t f t    

2.      
0 00 !

k
n kC k

t t k

t
D I f t f t f t

K

  


   

2.0   Model Formulation and Description 

The rate at which individuals are added to the susceptible population is represented as , so 

that 1 2,  is the effective contact rate between the susceptible and infected humans and 

individuals on Chlamydia treatment respectively. We represent as the rates at which 

individuals move from the exposed Chlamydia classes to the infected class. The rate of 

treatment for infected individuals with Chlamydia is represented as and  denotes the 

recovery rate of treated humans due to Chlamydia. The natural death rate of humans is 

denoted as  . The disease induced death rate of infected humans with Chlamydia and humans 

on Chlamydia treatment, is denoted as 1 2,  . The vaccination rate of susceptible humans 

against Chlamydia is denoted as 2 and the rate of vaccine failure is denoted as 1 . 

 

2.1 Model Assumptions  

1.  We assumed an imperfect vaccine that is there is possibility of vaccine failure. 

2. We assume that recovered humans from Chlamydia can become susceptible to it even after 

recovery from the disease. 

3. We assumed that individuals infected with Chlamydia get full recovery from the disease in 

the treatment class. 

 

2.2 Schematic Diagram of The Chlamydia Model 
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Fig.1: Chlamydia Model Flow Diagram 

2.3 Model Equation 

The differential equations modeling the transmission dynamics of Chlamydia in the human 

population is given as: 

 1 2

dS
V R S

dt
           , 

  ,
dE

S E
dt

    
 

 2 1 ,
dV

S V
dt

                                                                (5) 

 1 I,
dI

E
dt

        

 2 T,
dT

I
dt

        

.
dR

T R
dt

    

Where   
 1 2I T

N

 





 

2.4 Table of Model Variables and Parameters 

VARIABLE DESCRIPTION 

 S t  Population of Susceptible Humans 

 V t  Vaccinated Human population 

 E t  Exposed Humans to Chlamydia  

 I t  Infected Humans with Chlamydia 

 T t  Humans on Chlamydia treatment 
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 R t  Recovered humans from Chlamydia  

Parameters
 

Descriptions 

  Recruitment rate 

1   The effective contact rate between the 

susceptible and infected humans  

2  The effective contact rate between the 

susceptible individuals and humans on 

Chlamydia treatment   

   The progression rates from exposed 

Chlamydia classes to infected class 

  Treatment rate of humans with Chlamydia. 

  Recovery due to treatment rate 


 Natural death rate  

1  The mortality rate of infected individuals 

caused by the disease 

2  The mortality rate of  humans on Chlamydia 

treatment 

  Rate at which recovered humans becomes 

susceptible again 

1  Waning rate 

2  Vaccination rate 

 

3.0 Fractional Chlamydia mathematical model 

In this section, the integer-order Chlamydia model from Eq. (5) is extended by incorporating 

the Caputo fractional derivative operator. This modification offers greater flexibility 

compared to the traditional model in Eq. (5), as the fractional-order approach allows for a 

wider spectrum of dynamic behaviors. The resulting fractional-order Chlamydia model is 

presented as follows:  1 2 ,C

tD S V R S             

  ,C

tD E S E     
 

 2 1 ,C

tD V S V       

 1 I,C

tD I E        (6) 

 2 T,C

tD T I         

.C

tD R T R     

Subject to the positive initial conditions 

           0 0 0 0 0 00 , 0 ,V 0 , 0 , 0 , 0 .S S E E V I I T T R R      (7). 

 

3.1 Positivity of model solution 

We considered the non-negativity of the initial values 
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 lim ,SupN t



  

Secondly, if  0lim ,SupN t



 the feasible domain of our model is defined as: 

  6, , , , , : ,S E V I T R R S E V I T R





 
         

 
so that 

6 ,C R    

hence,   is positively invariant. 

If 0 0 0 0 0 0, , , , ,S E V I T R are non-negative, then the solution of model (6) remains non-negative 

for 0t . From Eq. (6),considering the first equation, we obtain

 1 2 ,C

tD S V R S           
 

 2 1 ,C

tD S S V R           
 

  But 1 0V R     then, 

 2 0C

tD S S                                                                                             (8)
 

Applying the Laplace transform we obtained; 

 2 0C

tL D S L S             

       1

20 0,S S s S S S s          

 
 

 
1

2

0 ,
S

S s S
S



   




  

 

By taking the inverse Laplace transforms, we obtained; 

    ,1 2 0 ,S t E t S

                                                                                        (9)
 

Since the term on the right-hand side of Eq. (9) is positive, it follows that for 0t . In similar 

way, we say that 0, 0, 0, 0, 0, 0.S E V I T R       that is are positives, consequently, the 

solution will remain in 6

R  for all  0t  with positive initial situation. 

3.2 Boundedness of fractional model solution 

The total population of individuals from our model is given by; 

             N t S t E t V t I t T t R t      .
 

So from our fractional model (6), we now obtain  
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             .C C C C C C C

t t t t t t tD N t D S t D E t D V t D I t D T t D R t           
 

   C

tD N t N t                                                                                          (10)
 

Taking the Laplace transformation of (10) we now have; 

   C

tL D N t L N t         ,
 

     1 0 ,S N s S N N s  




  
 

   
1

0 ,
( ) ( )

S
N s N

S S S



 



 



 
 

                                                         (11 

Taking the inverse Laplace transform of Eq. (11) we have ;
 

       ,1 , 10 ,N t E t N E t 

                                                      (12)
 

At ,t , the limit of Eq. (12) becomes 

 lim .
t

SupN t





 

This means that, if 0N



  then N




  which implies that,  N t  is enclosed or bounded.

 

We now conclude that, this region H , is well posed and similarly feasible 

epidemiologically. 

3.3 Existence and uniqueness of our model solution 

Let the real, non-negative value be H , we  0,H .Q   

The set of all continuous function that is defined on M is represented by  QNe

0
 with norm 

as; 

  ., QttXSupX 
                                                                               (13) 

Considering model (6) with initial conditions presented in (8) which can be denoted as an 

initial value problem (IVP) in (13). 

    , , 0 ,c

tD t Z t X t t H    
 

  .0 0XX 
 

Where               , , , , ,Y t S t E t V t I t T t R t represents the groups and Z  be a 

continuous function defined as follows; 
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 
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 
 
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  
 
  
 


  
 

   
 

  
 
  

(14) 

 

Using proposition (2.1), we have that,  

 
 1 2

0 1 2t

I T
S t S I V R S

N

  
    
  

        
   

, 

 

 
 

 1 2

0 , ,t

I T
E t E I S E

N

  
 

 
    

 
                                    (15) 

   0 2 1 ,tV t V I S V          

 

   0 1 I ,tI t I I E            

 

   0 2 T ,tT t T I I            

   0 .tR t R I T R      

 

We have the Picard iteration of (15) as follows; 

 
 

    
1

0 1 1

0

1
, ,

t

nS t S t Z S d


   




  
                                               (16) 

 
 

      1

0 2 1

0

1
, ,

t

n
E t E t Z E d


   






  

   

 
 

      1

0 3 1

0

1
, ,

t

n
V t V t Z V d


   






  

   

 
 

      1

0 4 1

0

1
, ,

t

n
I t I t Z I d


   






  

   

 
 

      1

0 5 1

0

1
, ,

t

n
T t T t Z T d


   






  

   

 
 

      1

0 6 1

0

1
, .

t

n
R t R t Z R d


   






  

   
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We now transformed the initial value problem of Eq. (13) to obtain; 

 

   
 

    
1

0

1
0 , .

t

X t X t Z X d



   




  
                        (17) 

Lemma 1, The Lipchitz condition described from Eq. (14) is satisfied by vector  

  XtZ , on a set   60,H R  with the Lipchitz constant given as;

 
            * *

1 2 2 1 1 2max , , , , , .                        
 

Proof. 

   111 ,, StZStZ 
 

   1 2 1 2

1 2 1 2 1

I T I T
V R S V R S

N N

   
         

    
              

     

 
  1 2 * *

2 1 1 1 2 1 1( ) ( ) ( ) ( )
I T

S S S S S S S S S
N

 
     

 
             

   

       * *

1 1 1 1 2 2 1 1, , ( ) ( )Z t S Z t S S S S S            

 
Similarly we obtained the following; 

 

     2 2 1 1, , ( ) ,Z t E Z t E E E    
 

 

     3 3 1 1 1, ,V ( ) ,Z t V Z t V V       (18)
 

     4 4 1 1 1, , ( ) ,Z t I Z t I I I      
 

 

     5 5 1 2 1, , ( ) ,Z t T Z t T T T      
 

 

     6 6 1 1, , ( ) .Z t R Z t R R R  
 

Where we obtained  

 

      ,,, 21211 XXtXtZtXtZ  
 

            * *

1 2 2 1 1 2max , , , , , .                         (19)   
 

 

Lemma 2. The initial value problem defined by (6) and (7) in Eq. (19) has a unique solution 

and exists. 

   .0 fAtX c
 

Using Picard-Lindelof andfixed-point theory, we estimate the solution of  

 

    ,tXStX 
 

11



Egbemhenghe, J., Faith Akor, L., Atokolo, W., & Amos, J. (2025). Numerical Solution of Fractional order Chlamydia Model Via the 

Generalized Fractional Adams-Bashforth-Moulton Approach. GPH - International Journal of Mathematics, 8(01), 01-23. 

https://doi.org/10.5281/zenodo.14716850 

 

© 2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics  

 

we definedS as the Picard operator articulated as; 

 

   6060 ,,:   RfARfAS cc
 

Therefore 

 

    
 

    
1

1

0

1
0 , ,

t

S X t X t Z X d


   



  

                                          (20)

 
 

which becomes  

 

 
       

1

1 2

0

1
, , ,

t

t Z X Z X d


     


 
   
  

  

 
       

1

1 2

0

1
, , ,

t

t Z X Z X d


     


 
   
  

  

 
 

1

1 2

0

,

t

t X X d


 


 
   
  


 

    
 

1 2 .
1

S X t SX t
S




 

 
                                                                    (21) 

When,  
1.

1
S






 
then the Picard operator provides a contradiction, ensuring that the 

solution to Eq. (6) and (7) is unique.
 

 

 

 

3.4The basic reproduction number (R0) and model equilibrium points: 

The disease-free equilibrium points of model (5) are represented as:

 
 

   
1 2

2 1

0 0 0 0 0

0

2 1

, ,V , , , ,0, ,0,0,0,0 .S E I T R
    

      




 
  



  
 

 
   (22) 

To calculate the basic reproduction number, we use the next-generation method.

 

Let

 , ,n E I T

 

So that, 

1dn
FV

dt


 

Where, 

     tXStXS 21 
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   1 1 1

1 1

2
0

0 0 0

0 0 0

h h

F

     

     

 
 
 


 


 
 
 
 

   

 

1

2

3

0 0

0

0

A

V A

A





 
 

 
 
    

 

 

 
2 2 1 3 1 3 1 1

2 1 1 2 3

0 .R
A A

A A A

       

  

  

 
                                                      (23) 

Where      1 2 1 2 2, , .A A A                

3.5 Endemic Equilibrium point 

We explored the potential for an endemic equilibrium point, representing a stable state where 

Chlamydia continues to exist within the population. At this equilibrium, the model's variables 

stay positive and maintain non-zero values. 

 * * * * * *0, 0, 0, 0, 0, 0 .S E V I T R       

To investigate the endemic equilibrium point, the model equations are restructured according 

to the infection rates within the populations. Using the fractional Chlamydia model (6), the 

endemic equilibrium state is defined as follows: 

 
2 3 4 5

2 4 5 1 3 1 2 3

* ,
P P P P

P P P PP
S

P

 

  



 

 
* 3 4 5

2 4 5 1 3 1 2 3

,
P P P

E
P P P PP P

  

  


 
 

 
* 2 4 5 2

2 4 5 1 3 1 2 3

,
P P P

V
P P P PP P

  

  


 
                                                        (24) 

 
* 3 5

2 4 5 1 3 1 2 3

,
P P

I
P P P PP P

   

  


 
 

 
* 3

2 4 5 1 3 1 2 3

,
P

T
P P P PP P

  

  


 
 

* 3

3 1 2 3 4 5 2 4 5 1 2

.
P

R
P PP P P P P P P

 

   
 

 
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Substituting into the force of infection 
 1 2I T

N

 



  

 3 3 3 5 3 4 5 2 3 4 5 2 4 5 21 P P P P P P P P P P P PB P P           , 

 32 01P RB   .                                                                                          (25) 

Where,
1 2( )P    , 

2 ( )P    , 
3 1( )P    ,

4 1( )P      ,
5 2( ),P     

6 ( ).P   

 

This implies that the model has a stable endemic equilibrium point. 

3.6 Global Stability of Chlamydia Disease 

Theorem 1: Prove that the system (5) is globally asymptotically stable at Disease free 

equilibrium, moreover, at 0 1.R   

Proof 

We develop the Lyapunov function to validate the results.

           1 0 2 0 3 0 4 0 5 0 6 0 .L u S S u E E u V V u I I u T T u R R               (26) 

Where 1 2 3 4 5 6, , , , ,u u u u u u are positive constants. 

Taking the derivative of a Lyapunov function, we obtained; 

          

   

1 1 2 1 2 3 1 3 2 2 4 2 1 4 3

2 5 4 6 4 1 2 3 4 5 6

1

.

L u SE u u u u u u u u u u

u u u u u S u E u V u I u T u R

     

       

            

         
 

Choosing the positive constants 1 2 3 4 5 6 1u u u u u u       

And N



  then, we obtained; 

L N     

  0.L N                                                                                                            (27) 

Hence the system (5) is globally asymptotically stable at the Disease-free equilibrium and at 

0 1.R   

3.7 Fractional order model numerical results  

We numerically solved the fractional-order Chlamydia model using the generalized fractional 

Adams-Bashforth-Moulton method outlined in [24]. The parameter values applied in the 

model are listed in Table 1, which also presents various fractional order values.   are 

considered and simulated. 
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3.8 Implementation of fractional Adams–Bashforth–Moulton method  

The approach outlined by [25, 9] has been utilized in this study. By employing the fractional 

Adams-Bashforth-Moulton method, we obtained an approximate solution for the fractional 

Chlamydia model given in equation (6). The fractional model (6) is now

    ,q , 0 ,c

tD H t Q t t t   
(28)

 

   
 

 00 , 1,0, ...,q,q .
nn

H H n     

Where  * * * * * * 6, ,V , I , ,RH S E T R   and   ,qV t t  is a real valued function that is 

continuous. 

Eq. (27) can thus be expressed using the concept of fractional integral as follows: 

   

 
    

1 1

0
0

0

1
k,

!

nm tn

n

t
H t H t y R m k dk

n





 



  


  (29) 

Using the method described in [43], we let the step size ,g N
N


   with a grid that is 

uniform on   0, .  Where , 0,1,1,... .ct cr c N  Hence, the fractional-order Chlamydia 

model presented in (6) can be approximated as: 

 
 

 

 
 

1 1

1 0 1 1

1 1 1 1

0

2

, 1 ,
2

n n

k

k
y

y y y

y y

I T Sg dS
S t S V R PS

dt N

Sg
dy k V R I T PS

N





 
  



    






  
        

    

  
      

    


 
 

 

 
 

1 2

1 2

1 0 2

2

0

,
2

, 1 ,
2

n
n

n n

n

y

y

k

k

yy

y y

g
E t E P E

g
dy k

S
I T

N
PI T E

N

S





 


 






 
    

   

  
  

   







(30)

 

  

 
 

 

 
 

1 0 4

4

0

I
2

, 1 I ,
2

n n

k

k

y

y

g
I t I E P

g
dy k E P















   
 

 
 


 

 
 

 

 
 

1 0 2 3

2 3

0

2

, 1 ,
2

n n

k

k

y y

y

g
V t V S PV

g
dy k S PV















   
 

 
 


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 
 

 

 
 

1 0 5

5

0

T
2

, 1 T ,
2

n n

k

k

y y

y

g
T t T I P

g
dy k I P















   
 
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From (29) and (30) obtained; 
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3.9 Importance of using the fractional Adam-Bashforth Moulton method in obtaining 

the numerical solutions of the model 
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1. The fractional Adams-Bashforth-Moulton method requires just one extra function 

evaluation per step, while maintaining high-order accuracy. 

2. This method provides built-in error control and is widely used in ODE solvers for 

integration. 

3. With its extensive applications in fields such as engineering, chemistry, and medicine, this 

method serves as a powerful tool for numerically solving both partial and fractional-order 

differential equations. 

 

 

 

 

4.1Numerical Simulation 

 

 

 

 

 

 

 

 

 

 (1a) shows the contour plot of concerning. A detailed examination of the numerical flow in 

the graph shows that the highest value of 0R reached by modifying these parameters is 0.8, 

which is below one (1). This suggests that reducing 1 and increasing 1 would not cause a 

substantial Chlamydia outbreak in the population. 

(1b) The contour plot of concerning is shown. By examining the numerical flow within the 

graph, it is evident that the maximum value attained by adjusting these parameters is 0.8, 

which is below one (1). This indicates that increasing these parameters would not result in a 

major Chlamydia outbreak within the population. 

 

 

 

 

 

 

Fig. (1a): Contour plot showing the impact of 

1 1and   on 0R  

 

Fig. (1b): Contour plot showing the impact of 

1and   on 0R  
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(2aIt can be observed that the basic reproduction number reaches its highest point below one (1) as 

the values of 1 reduces and the value of 1   increases. This indicates that reducing  1  

and increasing  1 will eventually reduce the impact of Chlamydia in the population. On the 

other hand, if necessary measures are not taken, 1 can worsen the prevalence of Chlamydia. 

This is clear from their impact on 0R  . 

(2b), It can be seen that the basic reproduction number peaks below one (1) as the values of

1 and   increases. This suggests that increasing these parameters will eventually reduce 

the impact of Chlamydia in the population. On the other hand, if proper measures are not 

taken, 1 and  can exacerbate the prevalence of chlamydia.This is clear from their 

influence on 0R . 

 

 

 

 

 

 

 

 

 

 

 (3a) illustrates the simulation of the impact of the contact rate  1 on Chlamydia in the 

susceptible population. It is observed that as the contact rate  1 rises, the number of 

susceptible individuals also increases.(3b) illustrates the simulation of the impact of the 

contact rate  1  on Chlamydia in the Exposed Human   population. It is observed that, as the 

Contact   rate  1  increases, the number exposed humans increases. 

 
 

Fig. (3a): Susceptible population to Chlamydia Fig. (3b): Exposed population to Chlamydia 
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 (3c) illustrates the simulation of the impact of the contact rate  1  on Vaccinated population 

against Chlamydia. It is observed that, as the Contact   rate  1  increases, the number of 

Vaccinated populations against Chlamydia increases. (5c) illustrates the simulation of the 

impact of the contact rate  1  on Chlamydia in Infected population. It is observed that, as the 

Contact   rate  1  increases, the number of infected populations increases. 

 

 

 

 

 

 

 

 

 

 

 

(3e) illustrates the simulation of the impact of the contact rate  1  on Chlamydia on the 

Treatment population. It is observed that, as the Contact   rate  1  increases, the number of 

humans in treatment class increases. (3f) illustrates the simulation of the impact of the contact 

rate  1  on Chlamydia on the Recovered population. It is observed that, as the Contact   rate 

 1  increases, the number of Recovered populations’ increases.  

 

 
 

Fig. (3e): Population of individuals on treatment of 

Chlamydia 

Fig. (3f): Recovered population from Chlamydia 
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 (3g) illustrates the simulation of the impact of the contact rate  1  on Chlamydia 

in the Cumulative new cases of Chlamydia. It is observed that, as the Contact   rate  1  

increases, the Cumulative new cases of Chlamydia increases. (3h) depicts the simulation of 

the effect of the treatment rate    on Chlamydia Cumulative new casesIt is noted that as the 

treatment rate    increases, the Cumulative new cases of Chlamydia decreases. 

 

5.0 Conclusions 

In this study, we propose a mathematical model to analyze the transmission dynamics and 

control strategies for Chlamydia, utilizing the Caputo fractional derivative. Recognizing the 

importance of fractional modeling, we conducted an in-depth theoretical analysis of the 

fractional Chlamydia model, emphasizing the existence and uniqueness of solutions as well 

as the stability of equilibrium points. For numerical solutions, we employed the fractional 

Adams–Bashforth–Moulton method. The simulations illustrated the influence of model 

parameters and varying fractional orders of the Caputo operator on disease incidence. 

Additionally, we examined the impact of modifying parameters such as the contact rate 

between infected and susceptible individuals and the treatment rate. The results suggest that 

enhancing treatment and vaccination efforts could substantially reduce the prevalence of 

Chlamydia in the population. Future studies could explore solving non-linear partial 

differential equations using symbolic computing techniques, such as those introduced by 

Zhang et al. [26], to obtain analytical solutions. 
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All data used in the course of this work are well cited in the work and referenced accordingly. 
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4.23 Parameter Values and Sources  

Parameter Value Source 

  0.05     [27] 

  0.3     [28] 

1  0.095 Estimated 

2  0.5  [29] 

  0.01245     [29] 

  0.7     [28] 

  0.2     [30] 

1  0.096 Estimated 

2  0.085 Estimated 

1  0.3 Estimated 

2  0.21 Estimated 

  0.23 Estimated 
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