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Abstract:  

This work analyses the perturbed Korteweg-de Vries (KdV) 

equation, a third-order nonlinear differential equation that is 

critical to understanding wave evolution. The emphasis is on 

discovering and investigating the approximate Lie symmetries 

and their associated conservation laws with this equation when 

exposed to different perturbing functions. Using the partial 

Lagrange approach, the study discovers approximate symmetries 

and their related conservation laws for the perturbed KdV 

equation. The goal is to identify particular perturbations that 

increase the number of approximation symmetries relative to the 

original KdV equation, exposing previously unknown system 

properties. The research involves adding various perturbations to 

the KdV equation, detecting the resulting Lie symmetries, and 

finding when the perturbed equation exhibits more symmetries 

than its unperturbed counterpart. 
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1. Introduction 

We know that Differential equations (DEs) [1] are essential tools in modelling a vast array of 

physical phenomena involving changes relative to one or more independent variables, and they are 

broadly categorised into ordinary differential equations (ODEs) and partial differential equations 

(PDEs). ODEs involve functions of a single independent variable and their derivatives, making them 

instrumental in describing systems where changes occur with respect to a single factor, such as time, 

and are used in simple dynamical systems, population dynamics, and basic physical systems like 

particle motion under force. PDEs, involving functions of multiple independent variables and their 

partial derivatives, are more complex and significant in fields such as mathematics, physics, fluid 

dynamics, mechanics, and physical chemistry, modelling phenomena like heat conduction, wave 

propagation, fluid flow, and electromagnetic field behaviour. Modelling PDEs under specific 

conditions and constraints is crucial for effectively manipulating the phenomena they describe; for 

instance, understanding fluid behaviour under different forces in fluid dynamics or describing wave 

propagation and heat diffusion in physics. Perturbated partial differential equations (PDEs) [2] are 

fundamental principles that define essential concepts in the mechanical and chemical engineering 

disciplines. Third-order derivative perturbed PDEs are particularly useful in mechanical engineering 

for understanding the dynamics of beam oscillations, stress distribution in complicated materials, and 

the vibrational behaviour of mechanical systems. 

Most real-world problems modelled by PDEs are inherently nonlinear, lacking 

straightforward analytical solutions, and are tackled using various approximation methods and 

techniques for high accuracy, such as numerical simulations, perturbation methods, and approximate 

symmetry techniques [2-4]. Approximate symmetry methods, particularly valuable for nonlinear 

PDEs, provide a systematic approach to finding approximate solutions by leveraging the symmetries 

of the equations. Developed by Baikov et al. [5-7] in the 1980s, the method of approximate Lie 

symmetry extends Lie’s theory by incorporating small perturbations, effectively uncovering hidden 

structures within perturbed PDEs and contributing to the development of conservation laws. The 

Korteweg–de Vries (KdV) equation [8], a well-known PDE modelling weakly nonlinear long-

wavelength waves, describes wave evolution due to the combined effects of weak nonlinearity and 

dispersion. When perturbed, the KdV equation can be analysed using approximate symmetry 

methods, allowing researchers to compute approximate symmetries and construct invariant solutions 

associated with the perturbed equations. These methods offer several advantages, including the 

identification of additional symmetries not apparent in the exact equation, facilitating the construction 

of invariant solutions that provide deeper insights into system dynamics, and analyzing system 

responses to changes through small perturbations to uncover new conservation laws [7, 9-11]. Despite 

the complexity of computations and the need for careful interpretation of results, the application of 

approximate symmetry methods remains a powerful tool in the analysis of nonlinear PDEs, offering a 

pathway to understanding and solving complex dynamical systems more accurately. 

Fractional-order partial differential equations (FPDEs) [12, 13] extend traditional PDEs by 

incorporating non-integer derivatives, enhancing the modelling of complex systems with memory and 

hereditary properties, such as viscoelastic materials and anomalous diffusion. These equations allow 

for a more accurate representation of real-world phenomena in fields like mechanics, fluid dynamics, 

and physical chemistry. For example, the Korteweg–de Vries (KdV) equation, which is a standard 

PDE used to model wave propagation, can be extended to a fractional KdV equation to describe 

waves with more complex, real-world characteristics. Similar to perturbation and approximate 

symmetry methods used for nonlinear PDEs, these techniques also apply to FPDEs, aiding in the 
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discovery of hidden symmetries and conservation laws, thus offering deeper insights and more precise 

solutions for complex dynamical systems.  

This research is designed to gradually investigate both exact and approximate symmetries, as 

well as tconservation laws derived using them, within the setting of equation (1). Section 2 is devoted 

to a careful examination of the exact symmetries and exact conservation laws, which provide 

fundamental insights into the unaltered KdV equation. Moving on, Section 3 digs into the methods 

designed expressly to address the approximation features of the KdV equation, which are critical 

when perturbations are applied. This section gives a thorough discussion of the technique, 

emphasising the changes required to efficiently manage these approximation components. Section 4 

applies the previously mentioned technique to several scenarios of the perturbed KdV equation, 

examining each scenario to obtain the associated conservation laws and proving the method's practical 

use and relevance. Finally, Section 5 concludes the study by summarising the important findings and 

emphasising the research's significant insights and contributions to the larger knowledge of nonlinear 

wave processes. 

2. Lie Symmetries of KdV Equation 

 The symmetries examined in this study [14, 15], are detailed as follows: The focus is on the 

Korteweg–de Vries (KdV) equation, which is a third-order nonlinear partial differential equation that 

can be expressed as follows:  

𝑦𝑡 − 6𝑦𝑦𝑥 + 𝑦𝑥𝑥𝑥 = 0. (1) 

This equation describes the evolution of long, shallow water waves and is a fundamental model in the 

study of nonlinear wave phenomena [16]. The KdV equation showcases both the effects of nonlinear 

interactions and dispersion, making it a pivotal subject in mathematical physics. Understanding its 

exact symmetries and conservation laws is crucial for analyzing the behavior of solutions and 

developing effective analytical and numerical methods for perturbed systems. The exploration of 

these symmetries aids in revealing deeper insights into the dynamics represented by the KdV 

equation. 

We define a Lie symmetry generator for equation (1), which takes the following look:  

𝒳 = 𝜉1(𝑥, 𝑡, 𝑦)
𝜕

𝜕𝑥
+ 𝜉2(𝑥, 𝑡, 𝑦)

𝜕

𝜕𝑡
+ 𝜂(𝑥, 𝑡, 𝑦)

𝜕

𝜕𝑦
. (2) 

The highest order of our equation (1) is three, so we extend the symmetry generator in equation (2) to 

third prolongation.  

𝒳[3] = 𝜉1 𝜕

𝜕𝑥
+ 𝜉2 𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑦
+ 𝜂𝑡

𝜕

𝜕𝑦𝑡
+ 𝜂𝑥

𝜕

𝜕𝑦𝑥
+ 𝜂𝑥𝑥

𝜕

𝜕𝑦𝑥𝑥

+𝜂𝑥𝑡
𝜕

𝜕𝑦𝑥𝑡
+ 𝜂𝑡𝑡

𝜕

𝜕𝑦𝑡𝑡
+ 𝜂𝑥𝑥𝑥

𝜕

𝜕𝑦𝑥𝑥𝑥
.

    (3) 

 

By applying symmetry generator in equation (3) on equation (1),  

𝒳[3](𝑦𝑡 − 6𝑦𝑦𝑥 + 𝑦𝑥𝑥𝑥𝑥) = 0, (4) 

we obtain 
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𝜂𝑡 − 6𝑦𝜂𝑥 − 6𝜂𝑦𝑥 + 𝜂𝑥𝑥𝑥 = 0. (5) 

The expanded form of equation (4) is  

[𝜂𝑡 − 𝜉𝑡
1𝑦𝑥 + (𝜂𝑦 − 𝜉𝑡

2)𝑦𝑡 − 𝜉𝑦
1𝑦𝑥𝑦𝑡 − 𝜉2𝑦𝑦𝑡

2] − 6𝑦[𝜂𝑥 + (𝜂𝑦 − 𝜉𝑥
1)𝑦𝑥 − 𝜉𝑥

2𝑦𝑡 − 𝜉𝑦
1𝑦𝑥

2 − 𝜉𝑥
2𝑦𝑥𝑦𝑡]

−6𝜂𝑦𝑥 + [𝜂𝑥𝑥𝑥 + (3𝜂𝑦𝑥𝑥 − 𝜉𝑥𝑥𝑥
1 )𝑦𝑥 − 𝜉𝑥𝑥𝑥

2 𝑦𝑡 + (3𝜂𝑦𝑦𝑥 − 3𝜉𝑥𝑥𝑦
1 )

𝑦𝑥
2 − 3𝜉𝑦𝑥𝑥

2 𝑦𝑥𝑦𝑡 + (3𝜂𝑦𝑥 − 3𝜉𝑥𝑥
1 )𝑦𝑥𝑥 − 3𝜉𝑥𝑥

2 𝑦𝑥𝑡 + (𝜂𝑦𝑦𝑦 − 𝜉𝑦𝑦𝑥
1 )𝑦𝑥

3

−3𝜉𝑦𝑦𝑥
2 𝑦𝑥

2𝑦𝑡 + (3𝜂𝑦𝑦 − 9𝜉𝑦𝑥
1 )𝑦𝑥𝑦𝑥𝑥 − 6𝜉𝑥𝑦

2 𝑦𝑥𝑦𝑥𝑡 − 3𝜉𝑦𝑥
2 𝑦𝑡𝑦𝑥𝑥 + (𝜂𝑦 − 3𝜉𝑥

1)𝑦𝑥𝑥𝑥

−3𝜉𝑥
2𝑦𝑥𝑥𝑡 − 𝜉𝑦𝑦𝑦

1 𝑦𝑥
4 − 𝜉𝑦𝑦𝑦

2 𝑦𝑥
3𝑦𝑡 − 6𝜉𝑦𝑦

1 𝑦𝑥
2𝑦𝑥𝑥𝑥 − 3𝜉𝑦𝑦

2 𝑦𝑥
2𝑦𝑥𝑡 − 3𝜉𝑦𝑦

2 𝑦𝑥𝑦𝑡𝑦𝑥𝑥𝑥

−4𝜂𝑦𝑦𝑥𝑦𝑥𝑥𝑥𝑥 − 3𝜉𝑦
2𝑦𝑥𝑦𝑥𝑥𝑡 − 3𝜉𝑦

1𝑦𝑥𝑥
2 − 3𝜉𝑦

2𝑦𝑥𝑥𝑦𝑥𝑡 − 𝜉𝑦
2𝑦𝑡𝑦𝑥𝑥𝑥𝑥 = 0.

(6) 

 

When we substitute equation (1) in equation (6), we get the following equations:  

𝜂𝑡 − 𝜉𝑡
1𝑦𝑥 + (𝜂𝑦 − 𝜉𝑡

2)𝑦𝑡 − 𝜉𝑦
1𝑦𝑥𝑦𝑡 − 𝜉𝑦

2𝑦𝑡
2 − 6𝜂𝑦𝑥 − 6𝑦[𝜂𝑥 + (𝜂𝑦 − 𝜉𝑥

1)𝑦𝑥 − 𝜉𝑥
2𝑦𝑡 − 𝜉𝑦

1𝑦𝑥
2 − 𝜉𝑦

2𝑦𝑥𝑦𝑡]

+𝜂𝑥𝑥𝑥 + (3𝜂𝑥𝑥𝑦 − 𝜉𝑥𝑥𝑥
1 )𝑦𝑥 − 𝜉𝑥𝑥𝑥

2 𝑦𝑡 + (3𝜂𝑥𝑦𝑦 − 3𝜉𝑥𝑥𝑦
1 )𝑦𝑥

2

−3𝜉𝑥𝑥𝑦
2 𝑦𝑥𝑦𝑡 + (3𝜂𝑥𝑦 − 3𝜉𝑥𝑥

1 )𝑦𝑥𝑥 − 3𝜉𝑥𝑥
2 𝑦𝑥𝑡 + (𝜂𝑦𝑦𝑦 − 𝜉𝑥𝑦𝑦

1 )𝑦𝑥
3 − 3𝜉𝑥𝑦𝑦

2 𝑦𝑥
2𝑦𝑡

+(3𝜂𝑦𝑦 − 9𝜉𝑥𝑦
1 )𝑦𝑥𝑦𝑥𝑥 − 6𝜉𝑥𝑦

2 𝑦𝑥𝑦𝑥𝑡 − 3𝜉𝑥𝑦
2 𝑦𝑡𝑦𝑥𝑥 + 6𝑦(𝜂𝑦 − 3𝜉𝑥

1)𝑦𝑥 − (𝜂𝑦 − 3𝜉𝑥
1)𝑦𝑡

−3𝜉𝑥
2𝑦𝑥𝑥𝑡 − 𝜉𝑦𝑦𝑦

1 𝑦𝑥
4 − 𝜉𝑦𝑦𝑦

2 𝑦𝑥
3𝑦𝑡 − 6𝜉𝑦𝑦

1 𝑦𝑥
2𝑦𝑥𝑥 − 3𝜉𝑦𝑦

2 𝑦𝑥
2𝑦𝑥𝑡 − 3𝜉𝑦𝑦

2 𝑦𝑥𝑦𝑡𝑦𝑥𝑥𝑥

−24𝑦𝜉𝑦
1𝑦𝑥

2 + 4𝜉𝑦
1𝑦𝑥𝑦𝑡 − 3𝜉𝑦

2𝑦𝑥𝑦𝑥𝑥𝑡 − 3𝜉𝑦
1𝑦𝑥𝑥

2 − 3𝜉𝑦
2𝑦𝑥𝑥𝑦𝑥𝑡 − 6𝑦𝜉𝑦

2𝑦𝑥𝑦𝑥𝑡 + 𝜉𝑦
2𝑦𝑡

2 = 0.

(7) 

 

All derivative terms of 𝑦 are independent in equation (7). When we compare the coefficients of 

derivative terms of 𝑦, we get the following equations and monomials, as shown in Table 1.   

 

Table 1: The exact symmetries of equation (1). 

 

Coefficients Monomials 

𝜂𝑡 − 6𝑦𝜂𝑥 + 𝜂𝑥𝑥𝑥 = 0 1 

−𝜉𝑡
1 − 6𝜂 − 6𝑦𝜂𝑦 − 𝜉𝑥

1 + 3𝜂𝑥𝑥𝑦 − 𝜉𝑥𝑥𝑥
1 + 6𝑦𝜂𝑦 − 3𝜉𝑥

1 = 0 𝑦𝑥 

−𝜉𝑦
1 + 6𝑦𝜉𝑦

2 − 3𝜉𝑥𝑥𝑦
2 + 4𝜉𝑦

1 = 0 𝑦𝑥𝑦𝑡 

𝜂𝑦 − 𝜉𝑡
2 + 6𝑦𝜉𝑥

2 − 𝜉𝑥𝑥𝑥
2 − 𝜂𝑦 − 3𝜉𝑥

1 = 0 𝑦𝑡 

−𝜉𝑦
2 + 𝜉𝑦

2 = 0 𝑦𝑡
2 

6𝑦𝜉𝑦
1 + 3𝜂𝑥𝑦𝑦 − 3𝜉𝑥𝑥𝑦

1 − 24𝑦𝜉𝑦
1 = 0 𝑦𝑥

2 

3𝜂𝑥𝑦 − 3𝜉𝑥𝑥
1 = 0 𝑦𝑥𝑥 

−3𝜉𝑥𝑥
2 = 0 𝑦𝑥𝑡 

𝜂𝑦𝑦𝑦 − 𝜉𝑥𝑦𝑦
1 = 0 𝑦𝑥

3 

−3𝜉𝑥𝑦𝑦
2 = 0 𝑦𝑥

2𝑦𝑡 

3𝜂𝑦𝑦 − 9𝜉𝑥𝑦
1 = 0 𝑦𝑥𝑦𝑥𝑥 

−6𝜉𝑥𝑦
2 − 6𝑦𝜉𝑦

2 = 0 𝑦𝑥𝑦𝑥𝑡 

−3𝜉𝑥𝑦
2 = 0 𝑦𝑡𝑦𝑥𝑥 

−3𝜉𝑥
2 = 0 𝑦𝑥𝑥𝑡 

𝜉𝑦𝑦𝑦
1 = 0 𝑦𝑥

4 

𝜉𝑦𝑦𝑦
2 = 0 𝑦𝑥

3𝑦𝑡 

𝜉𝑦𝑦
1 = 0 𝑦𝑥

2𝑦𝑥𝑥 

𝜉𝑦𝑦
2 = 0 𝑦𝑥

2𝑦𝑥𝑡 
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𝜉𝑦𝑦
2 = 0 𝑦𝑥𝑦𝑡𝑦𝑥𝑥 

𝜉𝑦
2 = 0 𝑦𝑥𝑦𝑥𝑥𝑡 

𝜉𝑦
1 = 0 𝑦𝑥𝑥

2  

𝜉𝑦
2 = 0 𝑦𝑥𝑥𝑦𝑥𝑡 

 

From the Table 1 we get the set of PDEs that are required which are listed as follows:  

 

𝜉𝑦
2 = 0, (8) 

 

𝜉𝑦
1 = 0, (9) 

𝜉𝑥
2 = 0, (10) 

3𝜉𝑥
1 − 𝜉𝑡

2 = 0. (11) 

Form equation (11), 

𝜉𝑥𝑥
1 = 0,

⇒ 𝜂𝑥𝑥𝑦 = 𝜉𝑥𝑥𝑥
1 ,

⇒ 𝜂𝑥𝑥𝑦 = 0,

𝜂 =
−1

6
𝜉𝑡

1 − 2𝑦𝜉𝑥
1.

 (12) 

As we know 

𝜉𝑥
1 =

1

3
𝜉𝑡

2 , (13) 

hence,  

𝜂 = −
1

6
𝜉𝑡

1 −
2

3
𝑦𝜉𝑡

2 ,

𝜂𝑡 = −
1

6
𝜉𝑡𝑡

1 −
2

3
𝑦𝜉𝑡𝑡

2 ,                                                  (14)

𝜂𝑥 = −
1

6
𝜉𝑥𝑡

1 −
2

3
𝑦𝜉𝑡𝑥

2 ,

𝜂𝑥𝑥𝑥 = 0,

 

 

𝜉𝑡𝑡
1 = 0, (15) 

𝜉𝑡𝑡
2 = 0. (16) 

Suppose  

𝜉2 = 𝐹(𝑡),
⇒ 𝐹𝑡𝑡(𝑡) = 0.

 (17) 

When we solve above differential equation in equation (17), we get 
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⇒ 𝐹𝑡(𝑡) = 𝑐1,

⇒ 𝐹(𝑡) = 𝑐1𝑡 + 𝑐2.
                                                     (18) 

We get first general solution, which is:  

𝜉2 = 𝑐1𝑡 + 𝑐2. (19) 

From equation (11),  

3𝜉𝑥
1 − 𝜉𝑡

2 = 0,

𝜉𝑦
1 = 0 ⇒ 𝜉1 = 𝐺(𝑥)𝑡,

𝜉𝑥
1 =

1

3
𝜉𝑡

2 ,

                                           (20) 

substitute the value of 𝜉2 from equation (18)  

𝜉𝑥
1 =

1

3
𝑐1. (21) 

When we solve equation (20) by taking integration w.r.t. 𝑥, we get  

 

⇒ 𝜉1 =
1

3
𝑐1𝑥 + 𝐻(𝑡),

⇒ 𝜉𝑡𝑡
1 = 𝐻𝑡𝑡(𝑡) = 0,

⇒ 𝐻(𝑡) = 𝑐3𝑡 + 𝑐4.

                                             (22) 

 

Finally, we obtain our next solution, which is:  

𝜉1 =
1

3
𝑐1𝑥 + 𝑐3𝑡 + 𝑐4.                                                    (23) 

We use first equation from equation (14), which gives us the following solution:  

𝜂 = −
1

6
𝑐3 −

2

3
𝑐1𝑦. (24) 

The Lie symmetry generators in (2) gives the following Lie symmetries for equation (1) are by using 

constants 𝑐𝑖 , 𝑖 = 1,2,3,4, given in Table 2.   

Table 2: Lie symmetries of equation (1). 

Lie symmetries 

𝒳1 =
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
−

2

3
𝑦

𝜕

𝜕𝑦
 

𝒳2 =
𝜕

𝜕𝑡
 

𝒳3 = 𝑡
𝜕

𝜕𝑥
−

1

6

𝜕

𝜕𝑦
 

𝒳4 =
𝜕

𝜕𝑥
 

 

6



Approximate Lie Symmetries and Conservation Laws of Third-Order Nonlinear Perturbed Korteweg–de Vries Equation 

©2024 Published by GLOBAL PUBLICATION HOUSE |International Journal of Mathematics| 

 

3.  Approximate Lie Symmetries of Perturbed KdV equation 

 This section outlines the development of a different way to find the approximate symmetries 

[2] of equation (1) that is perturbed with the function 𝑝(𝑥, 𝑡, 𝑦(𝑥, 𝑡), 𝑦(𝑡, 𝑥)) and defined as:  

 

𝑦𝑡 − 6𝑦𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝜀𝑝(𝑥, 𝑡, 𝑦(𝑥, 𝑡) = 0, (25) 

where 𝜀 is a small parameter that introduces the necessary perturbation to the KdV equation. We write 

separately both exact and approximate components of equation (25) are  

ℰ𝑒 = 𝑦𝑡 − 6𝑦𝑦𝑥 + 𝑦𝑥𝑥𝑥,

ℰ𝑝 = 𝑝(𝑥, 𝑡, 𝑦(𝑥, 𝑡)).
                                         (26) 

Equation (25) can be written in the following compact form  

ℰ𝑒 + 𝜀ℰ𝑝 = 0. (27) 

On the same way, we write the exact and approximate Lie symmetries as in the following new form  

𝒳 = 𝒳𝑒 + 𝜀𝒳𝑝. (28) 

Here,  

𝒳𝑒 = 𝜉𝑒
1 𝜕

𝜕𝑥
+ 𝜉𝑒

2 𝜕

𝜕𝑡
+ 𝜂𝑒

𝜕

𝜕𝑦
, (29) 

Represents the exact part of Lie symmetry generator, and  

 

𝒳𝑝 = 𝜉𝑝
1 𝜕

𝜕𝑥
+ 𝜉𝑝

2 𝜕

𝜕𝑡
+ 𝜂𝑝

𝜕

𝜕𝑦
, (30) 

is the approximate part of the Lie symmetry generator. Moreover, 𝜉1, 𝜉2, and 𝜂 are the unknown 

functions which are depending on 𝑥, 𝑡, and 𝑦, respectively. We use the generator 𝒳 defined in 

equation (28) on equation (27), we have  

 

(𝒳𝑒 + 𝜀𝒳𝑝)(ℰ𝑒 + 𝜀ℰ𝑝) = 0, (31) 

that gives  

𝒳𝑒ℰ𝑒 + 𝜀(𝒳𝑝ℰ𝑒 + 𝒳𝑒ℰ𝑝) + 𝑂(𝜀2) = 0. (32) 

The comparison of coefficients of 𝜀0 and 𝜀1, respectively, yields the exact and approximate 

symmetries of the corresponding PDEs as in the following:  

𝒳𝑒ℰ𝑒 = 0,
𝒳𝑝ℰ𝑒 + 𝒳𝑒ℰ𝑝 = 0.                                                      (33) 

This equation also shows the approximate Lie symmetries, which will be used to find thefunction 

𝑝(𝑥, 𝑡, 𝑦(𝑥, 𝑡)) [14, 17] as well as assist in deriving the approximate conservation laws associated with 

the KdV equation’s dynamics.  
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4.  New method to find approximate Lie Symmetries and Conservation Laws 

 We use a newly developed method to get the approximate symmetries and this method 

discusses the different cases to find the associated conservation laws of the following perturbed KdV 

equation [9, 18, 19],  

𝑦𝑡 − 6𝑦𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝜀𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = 0. (34) 

By utilizing the method outlined in [20-22] for expanding 𝑦, and we have  

𝑦 = 𝜒 + 𝜀𝜏. (35) 

Using this expansion in equation (34),  

(𝜒𝑡 + 𝜀𝜏𝑡) − 6(𝜒 + 𝜀𝜏)(𝜒𝑥 + 𝜀𝜏𝑥) + (𝜒𝑥𝑥𝑥𝑥 + 𝜀𝜏𝑥𝑥𝑥) = 𝜀𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥),

𝜒𝑡 + 𝜀𝜏𝑡 − 6𝜒𝜒𝑥 − 6𝜀𝜒𝜏𝑥 − 6𝜀𝜏𝜒𝑥 − 6𝜀2𝜏𝜏𝑥 + 𝜒𝑥𝑥𝑥 + 𝜀𝜏𝑥𝑥𝑥 = 𝜀𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥),   

(𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥) + 𝜀(𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥) + 𝜀2(−6𝜏𝜏𝑥) = 𝜀𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥).

 (36) 

Equation (36) can be written in the following form by neglecting higher order terms of 𝜀 

Λ𝑒 + 𝜀Λ𝑝 = 0. (37) 

When we compare the coefficients of 𝜀0 and 𝜀1 in equation (36), we get the following system  

Λ𝑒: = 𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥 = 0,

Λ𝑝: = 𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥 − 𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = 0.
 (38) 

The approximate Lie symmetry operator/generator is written as  

𝒳 = 𝒳𝑒 + 𝜀𝒳𝑝 = 0. (39) 

Here,  

𝒳𝑒 = 𝜉𝑒
1 𝜕

𝜕𝑥
+ 𝜉𝑒

2 𝜕

𝜕𝑡
+ 𝜂𝑒

𝜕

𝜕𝜒
+ 𝜉𝑒

1 𝜕

𝜕𝜏
,

𝒳𝑝 = 𝜉𝑝
1 𝜕

𝜕𝑥
+ 𝜉𝑝

2 𝜕

𝜕𝑡
+ 𝜂𝑝

𝜕

𝜕𝜒
+ 𝜉𝑝

1 𝜕

𝜕𝜏
.
 (40) 

Applying the Lie generator,  

𝒳(Λ𝑒 + 𝜀Λ𝑝) = 0,

(𝒳𝑒 + 𝜀𝒳𝑝)(Λ𝑒 + 𝜀Λ𝑝) = 0.
 (41) 

which gives us  

𝒳𝑒Λ𝑒 + 𝜀(𝒳𝑝Λ𝑒 + 𝒳𝑒Λ𝑝) + 𝑜(𝜀2) = 0,

𝒳𝑒Λ𝑒 = 0,
𝒳𝑝Λ𝑒 + 𝒳𝑒Λ𝑝 = 0.

 (42) 

Let us now go over the following scenarios in further depth.  
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Case I. 

Let, we define  

𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = −𝜒𝑡 − 𝜏𝑡 . (43) 

We get the following system of determining PDEs from equation (38),  

𝜉𝑡𝑡
2 = 0,    𝜉𝜒

2 = 0,    𝜉𝑡
1 = 0,

𝜉𝜏
2 = 0,    𝜉𝜏

1 = 0,,    𝜉𝜒
1 = 0,

𝜉𝑥
2 = 0,    𝜉𝑥

1 =
3

𝜉𝑡
2 , 𝜂 =

−2

3
𝜒𝜉𝑡

2,

𝜉1 = −
2

3
𝜉𝑡

2𝜏.

                         (44) 

As  

𝜕𝜉2

𝜕𝜒
= 0,

𝜕𝜉2

𝜕𝜏
= 0,

𝜕𝜉2

𝜕𝑥
= 0,

                                                               (45) 

this suggests that 𝜉2 depends solely on 𝑡. As a result,  

𝜉𝑡𝑡
2 = 0. (46) 

By integrating this equation twice with respect to 𝑡, we obtain  

𝜉2 = 𝑐1𝑡 + 𝑐2, (47) 

and also,  

𝜕𝜉1

𝜕𝑡
= 0,

𝜕𝜉1

𝜕𝜒
= 0,

𝜕𝜉1

𝜕𝜏
= 0,

                                                              (48) 

which shows that 𝜉1 is the function of 𝑥 alone. Therefore,  

𝜕𝜉1

𝜕𝑥
=

1

3
𝜉2𝑡. (49) 

Putting the value of 𝜉𝑡
2 in equation (49), we get  

𝜕𝜉1

𝜕𝑥
=

1

3
𝑐1. (50) 

Integrating equation (50), we get  

𝜉1 =
1

3
𝑐1𝑥 + 𝑐3. (51) 
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Now,  

𝜂 = −
2

3
𝜒𝜉𝑡

2. (52) 

Putting the value of " 𝜉𝑡
2 " in equation (52),  

𝜂 = −
2

3
𝜒𝑐1. (53) 

By taking  

𝜉1 = −
2

3
𝜉𝑡

2𝜏, (54) 

and putting the value of " 𝜉𝑡
2 " in equation (54),  

𝜉1 = −
2

3
𝑐1𝜏. (55) 

Therefore,  

𝜉1 =
1

3
𝑐1𝑥 + 𝑐3,    𝜉2 = 𝑐1𝑡 + 𝑐2,

𝜂 =
−2

3
𝜒𝑐1,    𝜉1 =

−2

3
𝑐1𝜏.

                         (56) 

When we use constants 𝑐𝑖 , 𝑖 = 1,2,3, we get the approximate Lie symmetries, which aregiven in 

Table 3.  

Table 3: Approximate Lie symmetries of equation (34). 

 

Approximate Lie symmetries 

𝒳1 =
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
−

2

3

𝜕

𝜕𝜏
−

2

3
𝜒

𝜕

𝜕𝜒
 

𝒳2 =
𝜕

𝜕𝑡
 

𝒳3 =
𝜕

𝜕𝑥
 

 

4.1. Conservation Laws of Perturbed KdV equation 

 We find the conservation laws of equation (34) in the following ways:  

𝒳1(𝜓(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥)) = 0,

(
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
−

2

3

𝜕

𝜕𝜒
−

2

3
𝜒

𝜕

𝜕𝜒
) 𝜓 = 0,

1

3
𝑥𝜓𝑥 + 𝑡𝜓𝑡 −

2

3
𝜓𝜏 −

2

3
𝜒𝜓𝜒 = 0,

3
𝑑𝑥

𝑥
=

𝑑𝑡

𝑡
=

𝑑𝜏

(−2/3)
=

−3

2

𝑑𝜒

𝜒
=

𝑑𝜓

0
.

                 (57) 
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 Now, by taking 

𝜂 =
−2

3
𝑐1𝜒 −

1

6
𝑐4,

𝜉1 = 6𝑐3𝜏 + 𝑐3,

𝜉2 = 𝑐1𝑡 + 𝑐2,

𝜉1 =
1

3
𝑐1𝑥 + 𝑐4𝑡 + 𝑐5.

                                            (64) 

Using the 𝑐𝑖 , 𝑖 = 1, . . . ,5, we get approximate Lie symmetries and their associated conservation laws 

that are given in Table 4.   

Table 4: Approximate Lie symmetries and associated conservation laws. 

  Approximate Lie symmetries   Associated conservation laws  

𝒳1 =
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
−

2

3
𝜒

𝜕

𝜕𝜒
 𝜓1 =

𝑥3

𝑡
+ 𝑥√𝜒

3
+ 𝑡𝜒

3
2 

𝒳2 =
𝜕

𝜕𝑡
 

𝜓2 = 𝑓𝑥, 𝑦, 𝜏, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳3 = 6𝜏 + 1
𝜕

𝜕𝜏
 

𝜓3 = 𝑔𝑥, 𝑦, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳4 = 𝑡
𝜕

𝜕𝑥
−

1

6

𝜕

𝜕𝜒
 𝜓4 =

𝑥

𝑡
+ 6𝜒 

𝒳5 =
𝜕

𝜕𝑥
 

𝜓5 = ℎ𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  

 

Case 3. 

In this case, we define  

𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = −𝜏𝑥 . (65) 

From equation (38), we get after comparing the coefficients of 𝜀0 and 𝜀1,  

𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥 = 0,
𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝑥 = 0.

                         (66) 

We find the following system of determining equations:  

𝜉𝑡
1 = 0, 𝜉𝑡𝑡

1 = 0, 𝜉𝜒
1 = 0,

𝜉𝑥
1 = 0, 𝜉𝜏

1 =
𝜉1

𝜏
, 𝜉𝜏

1 = 0,

𝜉𝑥
1 = 0, 𝜉𝑡

2 = 0, 𝜉𝜒
1 = 0,

𝜉𝜒
2 = 0, 𝜂 =

−1

6
𝜉𝑡

1𝜉𝜏
2 = 0, 𝜉𝑥

2 = 0.

                    (67) 

We get following solution 
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𝜂 =
−1

6
𝑐1,

𝜉1 = 𝑐3𝜏,

𝜉2 = 𝑐4,

𝜉1 = 𝑐1𝑡 + 𝑐2.

                                                          (68) 

The approximate Lie symmetries and their associated conservation laws for Case 3 are presented 

below. 

Case 4 

In this case, we take  

𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = 𝜒𝜏, (69) 

the system of equations (38) will take the following form  

𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥 = 0,
𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥 + 𝜒𝜏 = 0.

                         (70) 

 Applying equation (39) to equation (70), we get the following set of PDEs:  

𝜉𝑡
2 = 0, 𝜉𝑡

1 =
1

6
𝜏𝜉𝑡

1 , 𝜉𝑥
1 = 0,

𝜉𝜒
1 = 0, 𝜉𝑥

2 = 0, 𝜉𝜏
1 =

𝜉1

𝜏
,

𝜉𝑡𝑡
1 = 0, 𝜉𝑥

1 = 0, 𝜉𝜒
2 = 0,

𝜉𝜒
1 = 0, 𝜉𝜏

2 = 0, 𝜉𝜏
1 = 0,

𝜂 = −
1

6
𝜉𝑡

1.

                            (71) 

The above equations yield  

𝜉1 = 𝑐1𝑡 + 𝑐2,

𝜉2 = 𝑐3,

𝜂 =
−1

6
𝑐1,

𝜉1 =
1

6
𝜏𝑐1𝑡 + 𝑐4.

                                                   (72) 

We get the approximate Lie symmetries and their associated conservation laws of Case 4 by applying 

conditions on constants 𝑐𝑖.  

Case 5 

Let, we define  

𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = −𝜏, (73) 

and we get the following the system  

𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥 = 0,
𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏 = 0.

                             (74) 

Applying equation (39) to equation (74) gives the following set determining of PDEs:  
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𝜉𝑡
1 = 𝜉𝑡

2𝜏, 𝜉𝜏
1 = 0, 𝜉𝜒

1 = 0,

𝜉𝜒
1 = 0, 𝜉𝜏

1 =
𝜉1

𝜏
, 𝜉𝑡𝑡

2 = 0,

𝜉𝑥
1 = 0, 𝜉𝜒

2 = 0, 𝜉𝑥
1 =

1

3
𝜉𝑡

2

𝜉𝜏
2 = 0, 𝜉𝑥

2 = 0.

                                  (75) 

Solving the above equations, we get  

𝜉1 =
𝑐1𝑥

3
+ 𝑡𝑐3 + 𝑐4,

𝜉2 = 𝑐1𝑡 + 𝑐2,

𝜂 =
−2

3
𝜒𝜉𝑡

2𝑐1 −
1

6
𝜉𝑡

1𝑐3,

𝜉1 = 𝜏(𝑐1𝑡 + 𝑐5).

                                        (76) 

Finally, we find approximate symmetries and associated conservation laws of Case 5 when we apply 

conditions on 𝑐𝑖.  

Case 6 

We assume that  

𝑝(𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥) = −𝜏𝜒𝑡 , (77) 

then the system of equations (38) take the following form  

𝜒𝑡 − 6𝜒𝜒𝑥 + 𝜒𝑥𝑥𝑥 = 0,
𝜏𝑡 − 6𝜒𝜏𝑥 − 6𝜏𝜒𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝜒𝑡 = 0.

                          (78) 

Applying equation (39) to equation (78) results in the following set of PDEs:  

𝜉𝑡𝑥
2 = 0, 𝜉𝑡

1 = 0, 𝜉𝜒
1 = 0,

𝜉𝜏
1 = 0, 𝜉𝜏

1 =
𝜉1

𝜏
, 𝜉𝜒

1 = 0,

𝜉𝜏
2 = 0, 𝜉𝑥

1 = 0, 𝜉𝑡
2 = 0,

𝜉𝑡
1 = 0, 𝜉𝜒

2 = 0.

                                       (79) 

When we solve the above set of equations, we find the following solutions  

𝜉1 = 𝑐3,

𝜉2 = 𝑐2,

𝜂 = 0,

𝜉1 = 𝑐1𝜏.

                                                            (80) 

As a result, we get approximate Lie symmetries and their conservation laws of Case 6 with the help 

of conditions on 𝑐𝑖. 
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Table 5: Approximate Lie symmetries and associated conservation laws. 

  Approximate Lie symmetries   Associated conservation laws  

𝒳1 =
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
+ 𝜏𝑡

𝜕

𝜕𝜏
−

2

3
𝜒

𝜕

𝜕𝜒
 𝜓1 =

𝑥3

𝑡
+ 𝑥3 + 𝑥3𝜒

3
2 + 𝑒𝑡𝜏 + 𝑡𝜒

3
2 

𝒳2 =
𝜕

𝜕𝑡
 

𝜓2 = 𝑓𝑥, 𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳3 =
𝜕

𝜕𝑥
−

1

6

𝜕

𝜕𝜒
 

𝜓3 = 𝑥 + 6𝜒 

𝒳4 =
𝜕

𝜕𝑥
 

𝜓4 = 𝑔𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  

𝒳5 = 𝜏
𝜕

𝜕𝜏
 

𝜓5 = ℎ𝑥, 𝑦, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

 

Table 6: Approximate Lie symmetries and associated conservation laws.     

  Approximate Lie symmetries   Associated conservation laws  

𝒳1 =
1

3
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
−

2

3

𝜕

𝜕𝜏

−
2

3
𝜒

𝜕

𝜕𝜒
 

𝜓1 =
𝑥3

𝑡
+ 𝑥3𝑒

3
2𝜏 + 𝑥3𝜒

3
2 + 𝑡𝑒

3
2𝜏

+ 𝑡𝜒
3
2 + 𝜒𝑒−𝜏 

𝒳2 =
𝜕

𝜕𝑡
 

𝜓2 = 𝑓𝑥, 𝑦, 𝜏, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳3 =
𝜕

𝜕𝑥
 

𝜓3 = 𝑔𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

 

Table 7: Approximate Lie symmetries and associated conservation laws.    

  Approximate Lie symmetries   Associated conservation laws  

𝒳1 = −
1

6

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
 

𝜓1 = 𝑒−6𝑥/𝑡 

𝒳2 = 𝑥
𝜕

𝜕𝑥
 

𝜓2 = 𝑓𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳3 = 𝜏
𝜕

𝜕𝜏
 

𝜓3 = 𝑔𝑥, 𝑦, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳4 =
𝜕

𝜕𝑡
 

𝜓4 = ℎ𝑥, 𝑦, 𝜏, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  
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Table 8: Approximate Lie symmetries and associated conservation laws. 

Approximate Lie symmetries  Associated conservation laws  

𝒳1 = 𝑡
𝜕

𝜕𝑥
+

1

6
𝜏𝑡

𝜕

𝜕𝜏
−

1

6

𝜕

𝜕𝜒
 𝜓1 = 𝑒

𝑥
𝑡 /𝜏6 + 𝜏𝑒𝜒 +

𝑥

𝑡
+ 6𝜒 

𝒳2 =
𝜕

𝜕𝑥
 

𝜓2 = 𝑓𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  

𝒳3 =
𝜕

𝜕𝑡
 

𝜓3 = 𝑔𝑥, 𝑦, 𝜏, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳4 = 𝜏
𝜕

𝜕𝜏
 

𝜓4 = ℎ𝑥, 𝑦, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  

 

Table 9: Approximate Lie symmetries and associated conservation laws 

  Approximate Lie symmetries   Associated conservation laws  

𝒳1 = 𝜏
𝜕

𝜕𝜏
 

𝜓1 = 𝑓𝑥, 𝑦, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

𝒳2 =
𝜕

𝜕𝑡
 

𝜓2 = 𝑔𝑥, 𝑦, 𝜏, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥  

𝒳3 =
𝜕

𝜕𝑥
 

𝜓3 = ℎ𝑦, 𝜏, 𝑡, 𝜏𝑡 , 𝜏𝑥 , 𝜒𝑡 , 𝜒𝑥 

5.  Conclusion 

The third-order nonlinear KdV equation (1) is often used to simulate wave behaviour on the 

surface of shallow water. It has four fundamental Lie symmetries, which are outlined in Table 2 of 

this work. However, this study goes a step further by using approximation symmetry techniques to 

find other classes of the KdV equation that have more symmetries than the original, unperturbed form. 

Various exact perturbations to the KdV equation were used to identify the appropriate Lie 

symmetries. Notably, two major classes of perturbed KdV equations were found, each with five Lie 

symmetries. Tables 2, 4, and 5 show the symmetries and related conservation rules. In these tables, an 

additional symmetry was discovered, resulting in an additional conservation law, which reflects 

hidden information inside the system revealed by the perturbation process. This occurrence indicates 

that, while symmetry may not exist in the exact equation, perturbation can cause the equation to 

accept such symmetry. This impact is seen by comparing Tables 2–6. Table 1 identifies the 

determining PDEs that specify the collection of Lie symmetries for the given PDE. The precise PDE 

in Table 2 permits four Lie symmetries, however Tables 3 and 6 show just three, suggesting a loss of 

one symmetry (and one conservation law) in those circumstances.Tables 7 and 8 show four Lie 

symmetries, indicating that all conservation laws are restored in these cases. Finally, Table 9 

summarises the Lie symmetries and their accompanying conservation laws, emphasising the complex 

link between symmetries and conserved values within the setting of the KdV equation. 
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