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Abstract:  

A continuous formulation based on the Modified Second Derivative 

Simpson’s Block Methods (MSDSBM) with off-grid points are developed 

and adapted to cope with the integration of stiff systems of Ordinary 

Differential Equations (ODEs). The LU Decomposition technique was 

employed, which yields continuous formulation to derive the Standard 

Simpson’s Block Method (SSBM), Second Derivative Simpson’s Block 

Method (SDSBM), and the MSDSBM. This is achieved by combining the 

Modified Second Derivative Simpson’s Method (MSDSM) with other 

additional methods (obtained from the same continuous formulation) and 

applying them as numerical integrators by assembling them into a single 

block matrix equation. The basic stability properties of the block methods 

was investigated and found to be zero-stable, consistent, and convergent, and 

from their regions of absolute stability, they possess regions suitable for the 

solution of all stiff ordinary differential equations. Further investigation 

showed that the newly constructed methods are all A-stable and of high 

order. The performance of the methods was demonstrated on some 

numerical examples to show accuracy and computational efficiency. 
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1. INTRODUCTION 

Differential equations were discovered when the need to understand the dynamic of systems 

became more demanding. They are found in sciences and engineering as well as economics 

social sciences, biology, business and health care. Many systems described by differential 

equations are so large and complex that a purely analytical solution is sometimes not 

traceable. 

Numerical solutions for stiff systems of differential equations (ODEs) are very important in 

scientific computation, as they are widely used for solutions to real-world problems. In many 

applications modeled by systems of ordinary differential equations, these systems exhibit a 

behavior known as stiffness. Stiff systems are considered difficult because explicit numerical 

methods designed for non-stiff problems are used with very small step sizes or do not 

converge at all. 

Stiffness is an important concept in the numerical solution of ordinary differential equations. 

It depends on the differential equation, the initial conditions, and the interval under 

consideration. Interest in stiff systems appeared initially in radio engineering (like the Van 

der Pol problem) at the beginning of the 20th century. Then there was a new wave of interest 

in the middle 1950s with application in studying equations of chemical kinetics, and 

movement of celestial bodies, which contained both very slowly and very rapidly changing 

components. 

2. Review of Related Literature 

The first numerical method for differential equations was introduced by Euler in the 1760s 

and republished in his collected works in 1913. This method has order one and hence is not of 

any practical use, even though simple to implement. The first generalization of Euler’s 

method was by Adams and Bashforth in 1883. Their methods used more information from 

the past to take a step forward. The Adams-Bashforth methods are a special case of a class of 

methods known as linear multistep methods, which take the form: 

)].()()([ 11011 knknnknknn yfyfyfhyyy      (2.1) 

In the case of the Adams-Bashforth methods, .0,0,,,1 021   k An extension of 

this idea was developed by Moulton in which 𝛽0≠ 0.This gives the method an implicit 
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structure. Mohammed (2011) derived a linear multistep method with continuous coefficients 

and used it to obtain finite difference methods which were directly applied to solve first-order 

ODEs. Some methods, such as Taylor’s series, numerical integration, and collocation 

method, two block methods for solving ordinary differential equations have been proposed by 

some researchers such as Abbas (1997) Mohammed et al (2010), Odekunle et al. (2012), 

Awari (2017), which does not require the development of starting values. A self-starting 

second derivative Top-order block method for the numerical integration of stiff systems of 

ODEs was obtained through the Rodriguez polynomial as a basis function, (Awari, Y.S., & 

Taparki, R., 2021). 

A hybrid second derivative three-step method of order 7 was proposed for solving first-order 

stiff differential equations. The complementary and main methods were generated from a 

single continuous scheme through interpolation and collocation procedures. The continuous 

scheme makes it easy to interpolate at off-grid and grid points. The consistency, stability, and 

convergence properties of the block formula are presented. The hybrid second derivative 

block backward differentiation formula was concurrently applied to the first-order stiff 

systems to generate the numerical solution that does not coincide in time over a given 

interval, (Akinfenwa et al 2020). 

 

3.  METHODOLOGY  

3.1 Derivation of Second Derivative Simpson’s Method by LU Decomposition Method 
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then, 

(3.2) 

and the entries of L after applying 𝐿𝑈 Decomposition on 𝐷becomes 

,111  lal ijij ,0716151413121  llllll  
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Hence we obtain the entries of c as 
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Substituting the values of 𝑐 as in sub-section (2.2), yield the continuous formulation for the 

Second Derivative Simpson’s Method as: 

        

(3.3) 

where ,''' 2 nniii xxxyfg  

Evaluating (3.3) at 2 nxx  derive 
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   ,
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2
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(3.4) 

Equation (3.4) has order ,6p  and 
4725

1
7 c  

Equation (3.4) is the Second Derivative Simpson’s Method. 

3.1.1 Derivation of Second Derivative Simpson’s Block Method from the Continuous 

Formulation 

Substituting  1 nxx   in equation (3.3) gives 
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 (3.5) 

Equation (3.5) has order ,6p  and 
9450

1
7 c  

Now, (3.4) & (3.5) can be put together as follows; 

{
 
 

 
 

   2

2

212
15

7167
15

  nnnnnnn gg
h

fff
h

yy

   21

2

211 34013
240

11128101
240

  nnnnnnnn ggg
h

fff
h

yy
}
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3.1.2 Zero Stability of the Second Derivative Simpson’s Block Method (SDSBM) 
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convergence because is consistence and zero stable. 

3.1.3 Region of Absolute Stability of the Second Derivative Simpson’s Block Method 

The stability properties of the Second Derivative Simpson’s Block Method (SDSBM), has 

reformulated (3.6) as general linear methods. In which a general linear method is represented 

by a partitioned    rsrs   matrix, (containing A, U, B, and V), and using MATLAB 
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3.2 Derivation of the Modified Second Derivative Simpson’s Method (MSDSM) with 

off-step Collocation Points at 
2

1
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x  

(3.7) 
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Fig. 1: Region of Absolute Stability of the SDSBM
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And the entries of 𝑐 are listed as follows: 

 

 

 

 

The continuous formulation of the Modified Second Derivative Simpson’s Method gives; 
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(3.8) 

Evaluating (3.8) at 1 nxx , 
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The block form of the method is; 
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(3.12) 

Equation (3.12) is called the Modified Second Derivative Simpson’s Block Method 

(MSDSBM). 
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The modified second derivative Simpson’s block method of collocation points at 
2

1
n

x  is zero 

(0) stable, the method is also convergent because it has order  > 1. 

3.2.2 Region of Absolute Stability of the Modified Second Derivative Simpson’s Block 

Method with off-step Collocation Points at 
2

1
n

x  

The stability properties of the Modified Second Derivative Simpson’s Block Method 

(MSDSBM), has reformulated (3.12) as general linear methods. In which a general linear 
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The Modified Second Derivative Simpson’s Block Methods (MSDSBM) has uniform and 

higher order 7p , hence increasing the accuracy of the method for the same step number

2k .The regions of absolute stability of the methods (3.6), and (3.12) is A-stable, since the 

regions consists of complex plane outside the enclosed figure. 

 

4. RESULTS 

4.1 Numerical Experiments 

Problem 4.1.1:Consider a linear Stiff system in three-dimensions on the interval 10  x  
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The analytical solution of the system is given by 
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Figure 2: Region of Absolute Stability of the MSDSBM
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The problem was solved using the derived block methods and the results obtained are 

presented in Tables 1 and 2, while the solution curves are displayed in Figures 3 and 4. 

Table 1: Comparison of Analytical and Approximate Solution for Problem 4.1.1 

 

Table 2: Computation of Absolute Errors for Problem 4.1.1 

N SDSBM 

6p  

MSDSBD 

7p  

SSDM 

7p  

SDGAM 

6p  

SDGAM 

8p  

20 11108.1   14102.1   3109.2   11103.1   15103.7   

40 13105.2   17103.8   5108.6   13101.2   17103.1   

80 15108.3   0.0  6108.1   15102.3   17103.1   

160 17103.8   17104.1   8109.2   17105.6   0.0  

320 17108.2   17102.4   10106.4   17103.1   17106.2   

640 17106.5   17106.5   12104.7   17106.2   0.0  

     

N Analytical Sol. 

'y  

SDSBM 

'y  

MSDSBM 

'y  

20 21076676.6   21076676.6   21076676.6   

40 21076676.6   21076676.6   21076676.6   

80 21076676.6   21076676.6   21076676.6   

160 21076676.6   21076676.6   21076676.6   

320 21076676.6   21076676.6   21076676.6   

640 21076676.6   21076676.6   21076676.6   
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Problem 4.1.2: Given a Stiff Initial Value Problem (IVP) of the form 
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Fig. 3: Comparison of SDSBM with Analytical Solution
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Fig. 4: Comparison of MSDSBM with Analytical Solution
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 Table 3: Comparison of Analytical and Approximate Solution for Problem 4.1.2 

N Analytical Solution

ny '  

SDSBM 

'y  

MSDSBM 

'y  

0.0625 11073550.2   11073550.2   11073550.2   

0.03125 11073550.2   11073550.2   11073550.2   

                     

Table 4: Computation of Absolute Errors for Problem 4.1.2 

N SDSBM 

'y  

MSDSBM 

'y  

Sahi R.K. 

SSDM Jackson Cash  

0.0625 

 

101002864.3   131046414.2   11109   7103   7103   

0.03125 121003161.4   151055431.1   12104   8101   8101   
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Problem 4.1.3: The third test problem a Stiff system with interval 100  x , given by 
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Fig. 5: Comparison of SDSBM with Analytical Solution
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Fig. 6: Comparison of MSDSBM with Analytical Solution
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                        Table 5: Computation of Absolute Errors for Problem 4.1.3 

H SDSBM MSDSBM NEHPS EHPS 

0.05 41028113.9   31085374.5   3102144.2   6106499.1   

0.01 41006163.2   31035240.1   5109207.6   7102834.5   

0.005 41000525.1   41087871.6   5103166.1   9109938.9   

0.001 51015029.2   41039521.1   6105838.8   10104851.6   

     

 

4.2 Discussion of Results 

The derivation of the new methods schemes from the same continuous formulation and was 

effectively implemented in block forms for the numerical integration of stiff system of 

ordinary differential equations. Stability analysis of the block method showed zero stability 

and high  uniform order p  7 in MSDSBM and a uniform order p = 6 in SDSBM for k  2, 

with Figure 1 and 2 showing the Regions of Absolute Stability (RAS) are A-stable methods. 

Comparison of absolute error was made using the new methods of order 6 and 7, and the new 

block methods are more favorable than others, such as Sahi et al (2012), Nwachukwu G.C., 

and Mokwunyei N.E. (2018), and Sunday (2022), are presented in Tables 1 to 5, the solution 
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Fig. 7: Comparison of SDSBM with Analytical Solution
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curves are displayed in Figures 3 to 7. The derivations of the methods was done using the 

program codes (Maple), while the computation of the RAS, and results was done using the 

program codes (MATLAB). 

 

5. Conclusion 

A Modified Second Derivative Simpson’s Block Methods (MSDSBM) with off-grid points is 

proposed and obtain discrete methods for solving Stiff system, it has been shown that 

collocation methods for solving ordinary differential equations can equally be derived 

through the LU Decomposition techniques approach, all the required additional equations are 

obtained from the same continuous formulation. In this study, a new block methods that is 

capable of solving higher-order initial value problems of ordinary differential equations is 

presented. The basic property of the block methods was investigated and found to be zero-

stable, consistent, and convergent. The regions absolute stability of the block methods are all 

A-stable and of high order, and overcome the major constraints of stiff problems. The 

numerical results show that the methods are efficient and highly competitive with the existing 

methods cited in this paper. 
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