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ABSTRACT  

The emergence and spread of vector-borne diseases pose significant public health 

challenges worldwide, especially in regions where its primary vector, the Aedes aegypti 

mosquito, thrives. Zika virus (ZIKV) infection represents a pressing concern due to its 

potential for severe neurological complications and adverse pregnancy outcomes. 

Effective control strategies are imperative to mitigate ZIKV transmission and reduce 

the burden of disease. This study explores the application of the Laplace-Adomian 

Decomposition Method (LADM) to solve a mathematical model describing the dynamics 

of Zika virus transmission with vector control interventions. The Laplace-Adomian 

Decomposition Method (LADM) is used to numerically solve a Zika virus model 

incorporating vector control through Wolbachia-infected mosquitoes. This method 

allows for efficient and accurate computation of solutions, enabling insights into the 

impact of Wolbachia on reducing mosquito populations and controlling Zika 

transmission. The total population is dividing into three subpopulations: humans, Aedes 

aegypti mosquitoes, Wolbachia-infected mosquitoes and each of these subpopulations 

are further divided into epidemiological compartments. Advantages of the method over 

other numerical methods are clearly stated. Our findings demonstrate the effectiveness 

of the method and Wolbachia as a vector control measure. It also provides valuable 

insights for policymakers and public health authorities. 
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1. Introduction  

Zika virus, a member of the Flaviviridae family transmitted primarily by Aedes mosquitoes, has 

emerged as a significant global health threat in recent years. Initially identified in the Zika forest of 

Uganda in 1947, the virus garnered little attention until outbreaks in Micronesia in 2007 and later in 

the Americas in 2015 raised alarm due to its association with severe neurological complications and 

adverse pregnancy outcomes [1, 2, 6]. Zika virus infection during pregnancy has been linked to 

microcephaly and other congenital abnormalities in newborns, as well as neurological disorders such 

as Guillain-Barré syndrome in adults. The rapid spread of Zika virus, facilitated by globalization, 

urbanization, and climate change, has led to widespread transmission across continents, with 

outbreaks reported in over 80 countries. The virus's ability to exploit diverse mosquito species, 

including Aedes aegypti and Aedes albopictus, as vectors, coupled with its potential for sexual and 

vertical transmission, poses challenges for containment and control efforts [4, 5]. 

Efforts to combat Zika virus have focused on vector control, vaccination development, and public 

health measures such as surveillance and mosquito abatement. However, the complex interplay 

between the virus, vectors, hosts, and environmental factors underscores the need for 

multidisciplinary approaches, including mathematical modeling, to understand transmission dynamics 

and evaluate intervention strategies. Mathematical models offer valuable tools for simulating and 

predicting the spread of Zika virus, assessing the impact of control measures, and guiding public 

health responses [4,5,6]. These models integrate epidemiological, entomological, and environmental 

data to elucidate the drivers of transmission and identify optimal intervention strategies. This 

introduction provides a brief overview of the Zika virus, highlighting its emergence, transmission 

dynamics, associated health risks, and challenges for control. Subsequent sections will delve into the 

mathematical modeling of Zika virus transmission and explore the role of modeling in informing 

evidence-based interventions to mitigate the impact of the virus [3,5]. Wolbachia-infected mosquitoes 

have garnered attention as a potential tool for controlling the spread of Zika virus, among other 

mosquito-borne diseases. Wolbachia is a genus of bacteria that naturally infects a wide range of 

arthropods, including mosquitoes. When introduced into mosquito populations, Wolbachia can 

interfere with the replication of certain viruses, including Zika virus, dengue virus, and chikungunya 

virus, thereby reducing the mosquitoes' ability to transmit these pathogens to humans [7].One 

approach to using Wolbachia for Zika control involves the release of Wolbachia-infected mosquitoes 

into the wild. These infected mosquitoes mate with wild mosquitoes, passing on Wolbachia to their 

offspring. Over time, the proportion of Wolbachia-infected mosquitoes in the population increases, 

reducing the ability of mosquitoes to transmit Zika virus.Another approach is to release male 

mosquitoes infected with Wolbachia. These males mate with wild females, but the eggs laid by these 

females do not hatch, leading to a reduction in the overall mosquito population. This method can 

indirectly reduce Zika transmission by decreasing the number of competent vectors in the population 

[8]. 

The Laplace-Adomian Decomposition Method (LADM) is a powerful numerical technique used for 

solving differential equations, particularly nonlinear ones. It combines the Laplace transform with the 

Adomian decomposition method to provide accurate and efficient solutions to a wide range of 

differential equations [9]. The method was first introduced by George Adomian in the late 1970s as an 

extension of the Adomian Decomposition Method, which he developed for solving nonlinear ordinary 

and partial differential equations. The key idea behind LADM is to transform a given differential 

equation into a series of simpler equations, which are then solved iteratively. This process involves 

decomposing the solution into a series of components using the Adomian polynomials and integrating 

each component using the Laplace transform [9,10]. By systematically solving the resulting equations, 
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the LADM produces an approximate solution that converges to the exact solution as the number of 

terms in the series increases.LADM has been successfully applied to various fields, including 

mathematical biology, fluid dynamics, heat transfer, and engineering. Its ability to handle 

nonlinearities and its numerical efficiency make it a valuable tool for researchers and practitioners 

seeking solutions to differential equations that are difficult or impossible to solve analytically [9, 10, 

11]. 

Mathematical model is a vital tool in studying and analyzing the transmission dynamics of 

contagious disease within a population, thus several models have been formulated by various 

researchers in a attempt to make recommendations to health care personnel so as to control 

infectious disases. For example Atokolo et al.[12] examined the impact of parameter values 

(θ, φ, h, and γ) on reducing the basic reproduction number (R0) of COVID-19, suggesting 

that adjusting these parameters could lead to the eventual elimination of the disease from the 

population. Their numerical simulations indicated that proper adherence to control measures 

such as social distancing, hand hygiene, and coughing etiquette could contribute to the 

eradication of the disease over time. Additionally, increasing rates of quarantine and isolation 

for suspected and confirmed cases were found to be effective in reducing the spread of the 

pandemic. Other valuable models including [10, 11, 12, 13, 14, 15,16, 17] 

2. Model Formulation 

Suppose NH(t) is the total human population at time t, where this population is further 

subdivided into four compartments viz susceptible human population at time t, SH(t), exposed 

human population EH(t), infected human population IH(t)  and recovered human population 

RH(t). The total Ae.aegyptic mosquito population NM(t) is subdivided into three groups  

namely, the susceptible Ae.aegypitc mosquito population at time t SM(t),  exposed 

Ae.aegyptic mosquito population EM(t) and infected Ae.aegyptic mosquito population IM(t). 

Mosquito with wolbachia known as wolbachia mosquitoes are used to control Ae.aegyptic 

mosquitoes. The total wolbachia mosquito population at time t is NW(t). This population 

includes, the susceptible wolbachia mosquito population SW(t), exposed wolbachia mosquito 

population EW(t) and infected wolbachia mosquito  population IW(t). Let 𝜋𝐻(𝑡) be the 

constant recruitment rate of susceptible human population and 𝜆𝐻(𝑡) represents infection 

strength of human where 𝜇𝐻(𝑡) is the natural death rate of human population. exposed human 

progresses to infected population at the rate  𝛼𝐻(𝑡) and infected human recovered at the 

rate𝜃𝐻. Again let 𝜋𝑀  denotes constant recruitment rate of Ae.aegyptic mosquito population 

and 𝜆𝑀 represents infection transmission strength of Ae.aegyptic mosquito. It is noted that 

only females Ae.aegyptic mosquitoes bite, the male mosquitoes do not bite instead they feed 

on nectar from flowers. The exposed Ae.aegyptic mosquitoes become infected at the rate bM 

and 𝜇𝑀  is the natural death rate of Ae.aegyptic mosquito. 𝜋𝑊 is the constant recruitment rate 

of wolbachia mosquito and 𝜇𝑊 natural death rate of wolbachia mosquito Exposed wolbachia 

mosquito progresses to infected class at the rate 𝑎𝑊 where 𝜆𝑊the infection transmission 

strength of wolbachia mosquito.  
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2.1 Variables and Parameters Interpretation 

Table 1. Variables and Parameters used. 

Variables Interpretation 

( )HN t  Total human population  

( )Hs t  Susceptible    human population  

( )HE t  Exposed human population    

( )HI t   Infected human population   

)(tR  Compartment of individuals who recover from both diseases.  

( )HR t  Recovered human population   

( )MS t  Susceptible mosquito without wolbachia population  

( )MN t  Total population of mosquito without wolbacchia  

( )ME t  Population of exposed mosquito without wolbachia   

( )MI t  Population of infected mosquito without wolbachia    

( )wS t  Susceptible wolbachia mosquito population  

( )wN t  Total population of wolbachia mosquito 

( )wE t  Exposed wolbachia mosquito 

( )wI t  Infected wolbachia mosquito   

Parameter  Description  

( )H t  Recruitment rate of human population  

( )M W t   Recruitment rate of non wolbachia and wolbachia mosquito 

respectively  

, , ( )H M W t    Natural death rate of human, non wolbachia and wolbachia 

population respectively  

, , ( )H M W t    Infection ability of human, non wolbachia and wolbachia mosquito 

respectively 

1( )t  Mosquito biting rate  

1( )t  Transmission probability per biting of susceptible human with infected 

mosquito   

2 ( )t   Transmission probability per biting of susceptible mosquito with 

infected human 

3( )t  Transmission probability per mating of infected wolbachia mosquito 

with susceptible now wolbachia mosquito 

4 ( )t  Transmission probability per mating of susceptible non wolbachia 

mosquito with infected wolbachia mosquito  

2( )t  Sexual contact rate between susceptible human to an infected human  

( )H t  Progression rate from exposed human to infected human  
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( )H t  Recovery rate of infected human 

H  Disease induced death rate in human population 

( )Mb t  Progression from exposed to infected wolbachia mosquito  

( )Wa t  Progression from exposed wolbachia to infected wolbachia  mosquito  

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 1 Schematic diagram for the Model  

The Model Equations 
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 ( )M
M M M M M

dE
S b E

dt
     

 M
M M M M

dI
b E I

dt
   

 ( )W
W W W W

ds
s

dt
      

 ( )W
W W W W W

dE
S a E

dt
     

 W
W W W W

dI
a E I

dt
   

Where, 

 3 1 4 11 1 2 2 1 1, , w MM H H
H M W

H H H

I II I C I

N N N

       
  


    

2.2 Fractional Order of the Zika virus Model 

The Caputo derivative is measured as a differential operator in our model. We present in this 

segment some well-known definitions and effects that we shall be using throughout this 

research.  

Definition 1 The Caputo fractional order derivative of a function ( f ) on the interval [ TO, ] is 

defined by: 

  





t

nnC dssfst
n

tfD
0

)(1

0 ,)()(
)(

1
)( 


      (2) 

Where 1][  n  and ][  represents the integer part of . In particular, for ,10    the 

Caputo derivative becomes:  

   


t

C ds
st

sf
tfD

0

0 ,
)(

)(

)1(

1
)(






        (3) 

Definition 2 Laplace transform of Caputo derivatives is defined as 

1

0

[ ( )] ( ) (0),
n

C i k

K

D q t S h S S y    



 L
 

,1 nn  
 

,Nn
  (4) 

For arbitrary , 0,1,2,... 1,  [ ] 1ic R i n n      and ][ represents the non-integer part of

 . 
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Lemma 1. The following results hold for fractional differentiation equations 







1

0

)(

,
!

)0(
)()]([

n

i

i
t

c t
i

h
ththDI 

        (5) 

For arbitrary ,1,...,2,1,0,0  ni where 1][  n and ][ represents the integer part 

of  Introducing fractional-order into the model, we now present a new model described by 

the following Introducing fractional order derivative into the model we present new 

mathematical model describe by set of fractional difference of order   for 10    
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

 

 

 

 

 




 


 

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

 









 

        (6) 

2.3 The Laplace-Adomian Decomposition Method (LADM) Implementation 

We considered the general procedure of this method with the initial conditions. Applying 

Laplace transforms to both sides of the equation (1), and then we have: 
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 
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   (7) 

With initial conditions 

1 2 3 4 5 6 7(0) , (0) ,  (0) ,  (0) ,  (0) ,  (0) ,  (0) ,H H H H M M MS n E n I n R n S n E n I n        

8 9 10(0) ,  (0) ,  (0)W W WS n E n I n    

Dividing eqn. (7) by (
S  ) we have:  
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                (8) 

Decomposing the non-linear term of equation (6) whereby we assume the solution of 

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )H H H H M M M W W WS t E t I t R t S t E t I t S t E t I t are in the form of infinite 

series given by:   
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(9) 

We have three (5) non-linear terms. The non-linear term in equation (6) are decomposed by 

Adomian polynomial as follows: 
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(10) 
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The polynomials are given by  
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Substituting equation (9), (10) into equation (8) we obtained: 
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           (13) 

 

Evaluating the Laplace transform of the 2nd terms in the RHS of (16), we obtain 
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           (14)  

Taking the inverse Laplace transform of both sides of (14) 
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           (15)  

 

 

When 0n  we obtain, 

1 2 3 4 5 6 7(0) , (0) ,  (0) ,  (0) ,  (0) ,  (0) ,  (0) ,H H H H M M MS n E n I n R n S n E n I n        
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  (17) 

When 2n  , we obtain, 
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      (18) 

   

When 1n n  , we obtain, 
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                (19) 

The series solution of each compartment can be expressed as: 

 ( ) (0) (1) (2) ...H H H HS t S S S     

 ( ) (0) (1) (2) ...H H H HE t E E E     

 ( ) (0) (1) (2) ...H H H HI t I I I     

 ( ) (0) (1) (2) ...H H H HR t R R R     

 ( ) (0) (1) (2) ...M M M MS t S S S          (20) 

 ( ) (0) (1) (2) ...M M M ME t E E E     
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 ( ) (0) (1) (2) ...M M M MI t I I I     

 ( ) (0) (1) (2) ...W W W WS t S S S     

 ( ) (0) (1) (2) ...W W W WE t E E E     

 ( ) (0) (1) (2) ...W W W WI t I I I     

3. Convergence Analysis for the Laplace-Adomian Decomposition Method (LADM). 

The solution of (1) is expressed in the forms of infinite series which converged uniformly to 

its exact solution. To verify the convergence of the series (21), we employ the method used in 

[18]. For sufficient conditions of convergence of the LADM, we present the following 

theorem: 

 

Theorem 1 

Let X be a Banach space and :T X X be a constructive nonlinear operator such that for 

       
' ', ,  ,0 1.x x X T x T x k    Then, T has a unique point x such thatTx x ,where 

 , , , , , , , , , .H H H H M M M W W Wx S E I R S E I S E I  The series given () can be written by applying 

the Adominan decomposition method as follows: 

 1 1,n n nx Tx x  , 

 
1

1

,  1,2,3,...
n

i

i

x n




   

And we assume that  0 ,rx B x where    ': ;rB x x X x x r    then, we have as 

follows: 

(i)  n rx B x  

(ii) limn nx x   

Proof 

For condition (i), invoking mathematical induction, 

For n=1, we have as follows: 

    0 0 0 .x x T x T x x x      

If this is true for m-1, then 

 1

0 0 .mx x k x x    

This gives the following: 
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    1 1 0 .n

m m mx x T x T x k x x k x x         

Therefore,  

0 .n n

mx x k x x k r r      

This directly implies that  .n rx B x  

Also, for (ii), we have that since 
0

n

mx x k x x    and lim 0n

n k  , we can write 

limn nx x  . 

2.5 Numerical Solution of Laplace Adomian Decomposition Method (LADM) 

In this section, we will see the numerical solution of the model. Using the initial conditions, 

the Laplace Adomian Decomposition Method (LADM) gives us an approximate solution in 

in terms of an infinite series presented as: 

 

2
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( 1) (2 1)
2
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( 1) (2 1)

2
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(21) 

 

For 1  , the series solution of our model becomes, 
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2( ) 200000 429.97 410.58 ...

2( ) 150000 25080.46 2544.34 ...

2( ) 13000 25298.11 2328.28 ...

2( ) 9000 168.73 84.37 ...

2( ) 10000 419.29 37978049400 ...

( ) 8000 466.31 3797804942
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Table 5: Parameters Table of Values 

PARAMETERS VALUE SOURCE 

H  0.0647 [19] 

M  0.0471 Estimated 

W  0.03645 Estimated 

H  0.00003 [16] 

M  0.04 Estimated 

W  0.000025 [16] 

1  0.45 [15] 

2  0.37 Estimated 

1  0.000006 [18] 

2  0.16 Estimated 

3  0.11 [18] 

4  0.0000057 [16] 

H  0.17 Estimated 

H  0.013 [13] 

Mb  0.02070591 Estimated 

Wa  0.0193 Estimated 

H  0.0025 [14] 

1C  0.12 Estimated 
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Fig 2a. Effect of varying  on susceptible  Fig 2b. Effect of varying   on Exposed              

Human population     Zika virus. 

 

 

Fig 2c. Effect of varying  on Infected  Fig 2d. Effect of varying   on 

Recovered 

Humans population    Humans 

 

0 2 4 6 8 10
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
x 10

5

Time(in weeks)

S
u
s
c
e
p
ti
b
le

 H
u
m

a
n
s

 

 

=0.25

=0.45

=0.65

=0.85

0 2 4 6 8 10
0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5

Time(in weeks)

E
x
p
o
s
e
d
 H

u
m

a
n
s

 

 

=0.25

=0.45

=0.65

=0.85

0 2 4 6 8 10
1

2

3

4

5

6

7

8
x 10

4

Time(in weeks)

In
fe

c
te

d
 H

u
m

a
n
s

 

 

=0.25

=0.45

=0.65

=0.85
0 2 4 6 8 10

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

Time(in weeks)

R
e
c
o
v
e
re

d
 H

u
m

a
n
s

 

 

=0.25

=0.45

=0.65

=0.85

102



B.C. Agbata et al., (2024) Int. J. Mathematics. 07(03), 82-107 

 

©2024 Published by GLOBAL PUBLICATION HOUSE |International Journal of Mathematics| 

 

 

Fig 2e. Effect of varying  on Susceptible  Fig 2f. Effect of varying   on Exposed 

Mosquitoes     Mosquitoes 

 

 

 Fig 2g. Effect of varying  on Infected  Fig 2h. Effect of varying   on Susceptible 

Mosquitoes                     Wolbachia Mosquitoes 
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Fig 2i. Effect of varying  on Infected  Fig 2j. Effect of varying   on Infected 

Wolbachia Mosquitoes        Wolbachia Mosquitoes 

 

Conclusion  

In figure 2a, the number of susceptible individuals decreases initially and later rises due to 

increase in the number of exposed humans in figure 2b. From figure 2c, the number of 

infected humans decreases with time leading to high recovery rate in figure 2d which 

indicates strong disease control within the  population. It is observed   that the number of 

susceptible mosquitoes decreases (see figure 2e) due to increase in the number of wolbachia-

infected mosquitoes in figure 2h. It implies that with increasing time, the total mosquitoes 

population become wolbachia infected which means that the vector control measure is 

effective. Due the influx of mosquitoes from the susceptible population to the exposed 

population, the number of exposed mosquitoes increases in figure 2f leading to a decrease in 

the number of infected mosquitoes in figure 2g which implies disease control. A progressive 

increase is observed in number of wolbachia-infected population is observed in figure 2j 

which means transition of mosquitoes to wolbachia-infected mosquitoes is well implemented. 

In conclusion, the application of the Laplace-Adomian Decomposition Method (LADM) to 

solve the Zika virus model incorporating Wolbachia-infected mosquitoes as a vector control 

strategy presents significant contributions to both mathematical modeling in epidemiology 

and practical disease control measures. Through numerical simulations and analysis, key 

findings have emerged, shedding light on the efficacy of Wolbachia-infected mosquitoes in 

reducing Zika virus transmission rates. The use of LADM has proven advantageous in 

accurately capturing the dynamics of the system, allowing for a comprehensive understanding 

of the interplay between different variables and their impact on disease spread.One of the 

primary findings of this research is the effectiveness of Wolbachia-infected mosquitoes in 
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population, the model demonstrates a notable reduction in the number of infected individuals, 

thus highlighting the potential of this biological control method in mitigating disease burden. 

Furthermore, the utilization of LADM offers several advantages in this context. Unlike 

traditional numerical methods, LADM provides analytical solutions, facilitating a more 

intuitive interpretation of the results and enabling rapid sensitivity analysis. Moreover, its 

flexibility allows for the incorporation of complex nonlinearities inherent in epidemiological 

models, ensuring the accuracy of the predictions. The significance of this research extends 

beyond academic interest, with implications for government and public health workers. By 

elucidating the effectiveness of Wolbachia-infected mosquitoes as a vector control strategy, 

policymakers can make informed decisions regarding the implementation of such 

interventions in Zika virus-endemic regions. Additionally, the insights gained from this study 

can inform resource allocation and intervention planning, ultimately aiding in the reduction 

of disease transmission and the protection of public health. 

In summary, the application of LADM to analyze the Zika virus model with Wolbachia-

infected mosquitoes as a vector control strategy represents a valuable contribution to both 

theoretical epidemiology and practical disease control efforts. By elucidating key findings 

through numerical simulations and analysis, this research underscores the importance of 

utilizing innovative approaches in combating emerging infectious diseases and underscores 

the potential of biological control methods in mitigating disease burden. 

 

Conflict of interest 

The authors declare that they have no competing interest 

Funding 

We didn’t receive funding for the publication of this article  

Availability of data. 

The data used in this study are referenced and presented in table 2 above. 

 

 

 

 

 

 

 

105



Application of Laplace-Adomian Decomposition Method (LADM) to Solving Zika Virus Model with Vector Control 

©2024 Published by GLOBAL PUBLICATION HOUSE |International Journal of Mathematics| 

 

REFERENCES   

[1]  Rome B., Laura H., Butsaya T., Wiriya R., Chonticha K., Piyawan C. (2015),  

Detection of Zika virus infection in Thailand,  Am, J Trop. Med  93 (15) 380-

383 

[2]  Tognarelli J., Ulloa s., Villagra E, Lagos J, Aguoyo C, Fasce R, Parra B, Mora 

J, Becerra N, Lagos N, Vera L, Olivares B. (2016), A report on the outbreak of 

zika virus on Easter Island, South Pacific, Arch Virol  161: 665-668 

[3] H ayes E.B (2009), Zika virus outside Africa Emerg Infect Dis, 15(9): 1347-50 

[4]  Dick G.W (1952)  Zika virus (II). Pat  hogenicity and physical properties. 

Trans. Roy. Soc. Trop. Med H, 52(46), 521-534 

[5]  WHO (2022), Zika virus key facts: https://www.who.int/news-room/fact-

sheets/details/zika-virus .  

[6] NCDC (2016), Public health risk assessment of zika virus in Nigeria and 

interim  

 recommendations.  

[7] Hoffmann, Ary  A  Successful establishment of Wolbachia in Aedes populations to 

suppress dengue transmission." Nature 476.7361 (2011): 454-457. 

[8] Moreira, Luciano A. "A Wolbachia symbiont in Aedes aegypti limits infection with 

dengue, Chikungunya, and Plasmodium." Cell 139.7 (2009): 1268-1278. 

[9] Adomian, G. (1988). A review of the decomposition method in applied mathematics. 

Journal of Mathematical Analysis and Applications, 135(2), 501-544. 

doi:10.1016/0022-247X(88)90170-9 

      [10] Agbata, B.C., Shior, M.M.,  Olorunnishola, O.A., Ezugorie, I.G., Obeng-

Denteh, W (2021). Analysis of Homotopy Perturbation Method (HPM) and its 

application for solving infectious disease models. IJMSS 9(4), 27-38. 

      [11]  Agbata, B.C., Ani, B.N., Shior, M.M, Ezugorie, I.G., Paul, R.V., Meseda, P.K 

(2022). Analysis of Adomian Decomposition Method and its application for 

solving linear and nonlinear differential equations. Asian Research Journal of 

Mathematics. 18(2) 56-70 

[12] Egahi, M., Agbata, B.C., Shior, M.M.,  Odo, C.E (2020). Mathematical model 

for the control of the spread of meningitis virus disease in west Africa. A 

disease free equilibrium and local stability analysis approach. SCIRJ,  8(4), 1-

9 

[13] Ayla A (2015). Mathematical modelling approach in mathematics education. 

UJER, 3(12), 973-980 

[14] Agbata B.C, Ode O.J, Ani B.N, Odo C.E, Olorunnishola O.A. 

(2019).Mathematical assessment of the transmission dynamics of HIV/AID 

with treatment effects. IJMSS, 7(4), 40-52 

106

https://www.who.int/news-room/fact-sheets/details/zika-virus
https://www.who.int/news-room/fact-sheets/details/zika-virus


B.C. Agbata et al., (2024) Int. J. Mathematics. 07(03), 82-107 

 

©2024 Published by GLOBAL PUBLICATION HOUSE |International Journal of Mathematics| 

 

[15]  Chitnis N, Hyman J.M, Cushing J.M (2008). Determining important 

parameters in spread of malaria through the sensitivity analysis of a 

mathematical models. Bulletin of Mathematical Biology,  70(5) 1272-1296 

[16] Okon, I.M., Acheneje, G.O., Agbata, B.C., Onalo, P.O., Odeh, O.J., Shior, M.M 

(2023): A mathematical model for computation of alcoholism epidemics in Nigeria: 

A case of Lokoja metropolis  ( 05, 12, 2023). ICIET 2023, 

[17] Agbata B.C, Omale, D, Ojih, P.B, Omatola, I.U (2019). Mathematical  

analysis of chickenpox transmission dynamics with control measures. 

Continental J. Applied Sciences 14(2), 6-23 

[18]  Michael C.A, Mbah G.C, Duru, E.C (2020). On mathematical model for zika 

virus disease control using Wolbachia-infected mosquitoes. Abacus 

(mathematical science series) 47(1), 35-53 

[19] Dianavinnarasi J, Raja R, Jehad A, Sayooj A.J, Hasib K. (2023). Fractional 

order –density dependent mathematical model  to find the better strain of 

Wolbachia, Symmetry, 15(4), 845 

[20] Zongmin, Y. Yitong L, Fauzi M.Y, (2023). Dynamic analysis control of zika 

transmission with immigration,. AIMS, 8(9): 21893-21913 

 

 

107


