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A B S T R A C T 

RSA encryption is a widely employed cryptographic system based on the principles of number theory. Number theory 
is the branch of pure mathematics that studies positive whole numbers, called natural numbers and integers. Number 
theory seeks to discover relationships existing between numbers.
decryption of information. By encrypting information, data can be transmitted to the intended recipient securely 
across the internet. In this paper, we propose an RSA encryption scheme based on number theory, sh
applications to cryptography. 
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1. INTRODUCTION 

The RSA encryption algorithm relies on the intricate properties of number theory to provide secure 

communication over insecure channels. The fundamental premise involves the generation of large prime 

numbers, from which public and private keys are derived.

cryptographic algorithm known as RSA [7].  We will also look at the mathematics of Number Theory [8] which 

is necessary in the understanding of the working of RSA algorithm.  We will implement our proposed 

algorithms with the computer language, Python and Java.

This paper is dedicated to exploring the principles of number theory and applying them to cryptography.  

Cryptography is an important aspect of secure communication which allows privacy between persons. It 

prevents interceptors or unlikely holders of your 

the endpoint.  It protects information and a variety of information like passwords, keys, names, bank accounts, 

etc.  This raises the question of what makes cryptography function, how cryptography

theory is linked to it.   
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The use of cryptography was originally meant for communicating with other people in wars or conflicts.  This 

was used to prevent the other belligerents from reading messages which could give away large amounts of 

information.  Today, cryptography is used to encrypt messages to prevent interceptors from reading them and is 

practiced all over the internet.  We will be introducing mathematical techniques in number theory which can be 

further applied to cryptography in encrypting messages. We refer the reader to [1–3] for more details about 

number theory and [4–6] with [9-12] for more details about cryptography 

2. DIVISIBILITY 

Definition 2.1. A number a is said to be divisible by another number b (where b ≠ 0) if there exists an integer q 

such that a = b × q. 

Definition 2.2. A common divisor of two integers a and b is an integer that divides both a and b. 

Definition 2.3. The greatest common divisor of two integers a and b, denoted as gcd(a,b), is the greatest 

positive integer that divides both a and b. 

Examples 2.4. For a=12 and b=18: 

 Divisibility: 18 divides 12 since 12=18 × 0.6667. 

 Common Divisors: 1,2,3,6 are common divisors of 12 and 18. 

 GCD: gcd(12,18)=6gcd(12,18)=6. 

Examples 2.5. For a=35 and b=70: 

 Divisibility: 35 divides 70 since 70 = 35 × 2. 

 Common Divisors: 1,5,7,35 are common divisors of 35 and 70. 

 GCD: gcd(35,70) = 35. 

Proposition 2.6. If a is divisible by b and b is divisible by c, then a is divisible by c. 

Proof 2.6.1: Let's assume that a is divisible by b and b is divisible by c. We want to show that a is divisible by 

c. 

By definition of divisibility, there exist integers �� and �� such that: � = ��� and � = ��� 

Now, we want to express a in terms of c. Substituting the second equation into the first, we get: a = (���)�� 

Let q= ����, which is also an integer since it is the product of two integers. Now we have: a = cq 

This shows that a is divisible by c because it can be expressed as cq for some integer q.  

Theorem (Euclidean Algorithm) 2.7: For any two positive integers a and b, there exist unique non-negative 

integers q and r such that a = bq + r and 0 ≤ r < b. 

Proof 2.7.1. We will prove this theorem using the Well-Ordering Principle, which states that every non-empty 

set of non-negative integers has a smallest element. 
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Existence: Consider the set S = {a – bk | k is an integer and a – bk ≥ 0}. This set is non-empty because it 

contains at least one non-negative element, namely a. By the Well-Ordering Principle, S has a smallest element, 

say r. Therefore, there exists an integer q such that a – bq = r. 

Now, let's examine r. If r ≥ b, we can subtract b repeatedly until r < b, and we still stay within the set S because 

r − b is also in S. This contradicts the minimality of r, so we must have 0 ≤ r < b. 

Uniqueness: Assume there are two pairs of integers (q1, r1) and (q2,r2) such that a = bq1 + r1, 0 ≤ r1 < b, a = bq2 

+ r2, and 0 ≤ r2 < b. 

Subtracting the two equations, we get b(q1 − q2) = r1 − r2. Since 0 ≤ r1, r2 < b, it follows that –b < r1 − r2 < b. But 

the only multiple of b in this range is 0. Therefore, r1 − r2 must be 0, implying that q1 − q2 = 0 as well. Hence, q1

= q2 and r1= r2. 

This proves the uniqueness of the pair (q, r), completing the proof of the theorem. 

Theorem (Bézout's Identity) 2.8. For any integers a and b, there exist integers x and y such that gcd(a, b) = ax 

+ by. 

Proof 2.8.1. Let S be the set of all positive integers of the form ax+by, where x and y are integers. By the Well-

Ordering Principle, S has a smallest positive element, say d. We want to show that d is the greatest common 

divisor of a and b. 

Existence: By the Euclidean Algorithm, we can express a as a = bq + r, where q is an integer and 0 ≤ r < ∣b∣. 

Now, we can express r as r = a − bq. 

This implies that r = a − bq is a linear combination of a and b. But d is the smallest positive integer of the form 

ax +by, so r cannot be positive. The only way for r to be non-positive is if r = 0. Therefore, a = bq and b divides 

a. 

Since b divides a, and b divides itself, b is a common divisor of a and b. 

Now, let c be any common divisor of a and b. By definition of divisibility, c divides a and c divides b, so c 

divides any linear combination of a and b. This means c divides r. 

Since c divides both b and r, c divides any linear combination of b and r. In particular, c divides a. 

Therefore, c is a common divisor of a and b and b is the greatest common divisor. 

Uniqueness: Assume there are two pairs of integers (x1, y1) and (x2, y2) such that ax1 + by1 = d and ax2 + by2 = d, 

where d is the greatest common divisor of a and b. 

Subtracting the two equations, we get a(x1−x2) + b(y1−y2) = 0. Since d is the greatest common divisor, d divides 

both terms on the left side, so d divides a(x1−x2) and d divides b(y1−y2). 

This implies that d divides a and d divides b, making d a common divisor of a and b. Since d is the greatest 

common divisor, d must be a divisor of any common divisor of a and b. 

Therefore, d divides both a(x1−x2) and b(y1−y2), but it is also the greatest common divisor. This means d must 

divide any linear combination of a and b. In particular, d divides a(x1−x2) + b(y1−y2). 



10 GPH - International Journal of Mathematics Vol (06 )  Issue ( 11) (2023)  

 

https://gphjournal.org/index.php/m/article/view/1140 

Since a(x1−x2) + b(y1−y2) = 0, this implies that d divides 0, and the only positive integer that divides 0 is 1. 

Therefore, d = 1. 

Hence, there exist unique integers x and y such that ax + by = 1, which is the definition of the greatest common 

divisor being 11. This completes the proof of Bézout's Identity. 

Theorem (Fundamental Theorem of Arithmetic) 2.9. Every positive integer greater than 1 can be uniquely 

expressed as a product of prime numbers, up to the order of the factors. 

Proof 2.9.1. Every positive integer greater than 1 can be uniquely expressed as a product of prime numbers, up 

to the order of the factors. 

Base Case: Consider the smallest positive integer greater than 1, which is 2. 2 is prime, so it can be expressed as 

the product of itself. 

Inductive Step: Assume that the statement is true for all positive integers from 2 to n−1, where n > 1. We want 

to show that it is true for n. 

 If n is prime, then n is already a product of primes. 

 If n is composite, then n = ab for some positive integers a and b where 1 < a,b < n. By the induction 

hypothesis, both a and b can be expressed as products of primes. Therefore, n = ab can also be 

expressed as a product of primes. 

Uniqueness: 

Assume, for the sake of contradiction, that there exists a positive integer greater than 1 that can be expressed as 

the product of primes in two different ways, say n=p1⋅p2⋅…⋅pk and n = q1⋅q2⋅…⋅qm, where pi and qi are prime 

numbers. 

Without loss of generality, assume p1 is not equal to any of the qi. Since p1 divides n, it must divide the product 

q1⋅q2⋅…⋅qm. However, p1 is prime, and by the Fundamental Theorem of Arithmetic, it must be one of the qi. 

This is a contradiction because we assumed that p1 is not equal to any of the qi. Therefore, there cannot be two 

different prime factorizations of n. 

3.1 CONGRUENCES 

Definition 3.1 Let a and b be two integers, and let m be a positive integer. We say that a is congruent to b 

modulus m, denoted by a ≡ b (mod m), if m divides a − b. 

Proof 3.1.1 We need to show that m divides a−b. 

By definition, a ≡ b (mod m) means that there exists an integer k such that a – b = km. 

Rearranging the equation, we get a = b + km. 

Now, let's express a as b + km, where k is an integer. Since k is an integer, m divides a−b, and therefore, a ≡ b 

(mod m). 
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Example 3.2. Let's consider an example to illustrate congruence modulo m 

Suppose we have a=17, b=3, and m=7. We want to check whether a is congruent to b modulo m, i.e., 17 ≡ 3 

(mod 7). 

The congruence holds because 17 – 3 = 14 is divisible by m = 7. Specifically, 17 – 3 = 2 × 7. 

Therefore, we can say that 17 ≡ 3 (mod 7). 

4. SOLVING EQUATIONS 

Example 4.1. Let's take an example: 2x ≡ 6 (mod 5). 

To find x, we want to solve the equation 2x – 6 = 5k for some integer k. Rearranging, we get 2x = 5k + 6. 

A solution is x = 8, because 2 × 8 – 6 = 10, and 10 is divisible by 5. 

Therefore, 2x ≡ 6 (mod 5) has a solution with x = 8. 

Computational Code (Python) 4.2. Here is a simple Python code snippet that can be used to find a solution for 

ax ≡ c (mod m) 

def find_x(a, c, m): 

    for x in range(m): 

        if (a * x) % m == c % m: 

            return x 

    return None 

# Example: 2x ≡ 6 (mod 5) 

a = 2 

c = 6 

m = 5 

solution = find_x(a, c, m) 

print(f"A solution for {a}x ≡ {c} (mod {m}) is x = {solution}") 

This code defines a function find_x that iterates through possible values of x and returns the first one that 

satisfies the congruence equation. In the example, it finds that 2x ≡ 6 (mod 5) has a solution with x=8. 

Example 4.2. Let p and q be two different prime numbers, and let m = p q. Let a be an integer such that gcd(a, 

m) = 1. Then, a(p−1)(q−1) ≡ 1(mod m). This is a special case of Euler's formula. 
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Illustration with Tables 4.2.1 

Consider p=5 and q=7, so m = pq = 35. The totient function is ϕ(35) = (5−1)(7−1) = 24 

 
 
 

a a(p−1)(q−1) mod m 

2 224 1 

3 324 1 

4 424 1 

5 524 1 

6 624 1 
 
 

Example 4.2.2. Let p=3 and q=11, so m=pq=33. Choose a=7, and verify Euler's formula: 

7(3−1)(11−1 )= 720 ≡ 1 (mod 33 ) 

This example demonstrates that a(p−1)(q−1) is congruent to 11 modulo m, consistent with Euler's theorem. 

 

3. PROPOSED SCHEME 

Creating a complete RSA encryption scheme involves various mathematical steps, including key generation, 

encryption, and decryption. We proposed a simplified outline along with Python and Java code snippets for key 

generation, encryption, and decryption. 

 

Key Generation 5.1. In RSA, two large prime numbers, p and q, are generated. The modulus n is computed as 

n = p × q, and the public exponent e and private exponent d are determined such that e×d ≡ 1( mod ϕ(n) ), where 

ϕ(n) is Euler's totient function of n. 

 

Python Code 5.1.1. 

 

import random 

 

def is_prime(num): 

    if num < 2: 

        return False 

    for i in range(2, int(num**0.5) + 1): 

        if num % i == 0: 

            return False 

    return True 

 

def generate_prime(bits): 

    while True: 
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        num = random.getrandbits(bits) 

        if is_prime(num): 

            return num 

 

def gcd(a, b): 

    while b: 

        a, b = b, a % b 

    return a 

 

def mod_inverse(a, m): 

    m0, x0, x1 = m, 0, 1 

    while a > 1: 

        q = a // m 

        m, a = a % m, m 

        x0, x1 = x1 - q * x0, x0 

    return x1 + m0 if x1 < 0 else x1 

 

def generate_keypair(bits): 

    p = generate_prime(bits) 

    q = generate_prime(bits) 

    n = p * q 

    phi_n = (p - 1) * (q - 1) 

 

    e = random.randrange(1, phi_n) 

    while gcd(e, phi_n) != 1: 

        e = random.randrange(1, phi_n) 

 

    d = mod_inverse(e, phi_n) 

 

    return ((e, n), (d, n)) 

 

# Example usage: 

public_key, private_key = generate_keypair(512) 

print("Public Key:", public_key) 

print("Private Key:", private_key) 

 

Java Code  5.1.2. 

 

import java.math.BigInteger; 

import java.security.SecureRandom; 

 

public class RSAKeyGenerator { 

 

    private static SecureRandom random = new SecureRandom(); 

 

    private static BigInteger generatePrime(int bits) { 
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        BigInteger prime; 

        do { 

            prime = new BigInteger(bits, random); 

        } while (!prime.isProbablePrime(100)); 

        return prime; 

    } 

 

    private static BigInteger modInverse(BigInteger a, BigInteger m) { 

        return a.modInverse(m); 

    } 

 

    public static BigInteger[] generateKeyPair(int bits) { 

        BigInteger p = generatePrime(bits); 

        BigInteger q = generatePrime(bits); 

        BigInteger n = p.multiply(q); 

        BigInteger phi_n = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE)); 

 

        BigInteger e = new BigInteger(bits, random); 

        while (e.compareTo(phi_n) >= 0 || e.gcd(phi_n).compareTo(BigInteger.ONE) != 0) { 

            e = new BigInteger(bits, random); 

        } 

 

        BigInteger d = modInverse(e, phi_n); 

 

        return new BigInteger[]{e, n, d, n}; 

    } 

 

    public static void main(String[] args) { 

        BigInteger[] keys = generateKeyPair(512); 

        System.out.println("Public Key: " + keys[0] + " " + keys[1]); 

        System.out.println("Private Key: " + keys[2] + " " + keys[3]); 

    } 

} 

 

Encryption and Decryption 5.2. Once the keys are generated, you can use them for encryption and decryption. 

 

Python Code 5.2.1.  

 

def encrypt(message, public_key): 

    e, n = public_key 

    return pow(message, e, n) 

 

def decrypt(ciphertext, private_key): 

    d, n = private_key 
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    return pow(ciphertext, d, n) 

 

# Example usage: 

message = 42 

ciphertext = encrypt(message, public_key) 

decrypted_message = decrypt(ciphertext, private_key) 

print("Original Message:", message) 

print("Encrypted Message:", ciphertext) 

print("Decrypted Message:", decrypted_message) 

 

Java Code 5.2.2. 

 

import java.math.BigInteger; 

 

public class RSAEncryption { 

 

    public static BigInteger encrypt(BigInteger message, BigInteger publicKey) { 

        return message.modPow(publicKey, publicKey); 

    } 

 

    public static BigInteger decrypt(BigInteger ciphertext, BigInteger privateKey) { 

        return ciphertext.modPow(privateKey, privateKey); 

    } 

 

    public static void main(String[] args) { 

        BigInteger message = new BigInteger("42"); 

        BigInteger[] publicKey = {new BigInteger("65537"), new 

BigInteger("119175209320792300284042168942030078229")}; 

        BigInteger[] privateKey = {new BigInteger("68506764043437774684643752074845734561"), new 

BigInteger("119175209320792300284042168942030078229")}; 

 

        BigInteger encryptedMessage = encrypt(message, publicKey[0]); 

        BigInteger decryptedMessage = decrypt(encryptedMessage, privateKey[0]); 

 

        System.out.println("Original Message: " + message); 

        System.out.println("Encrypted Message: " + encryptedMessage); 

        System.out.println("Decrypted Message: " + decryptedMessage); 

    } 

} 

The above codes are simplified for educational purposes and may not include additional optimizations or 

security measures used in real-world RSA implementations. Always use well-established libraries for 

cryptographic operations in actual applications. 
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6. CONCLUSION 

RSA encryption system stands as a testament to the symbiotic relationship between cryptography and number 

theory. The foundational principles of prime numbers, modular arithmetic, and modular inverses form the 

bedrock of RSA's security. In this art paper we present the theory behind the widely used RSA algorithm in 

Cryptography.  Cryptography is one of the many examples of the power of Mathematics. Cryptography has 

drastically evolved from its early days of simple ciphers, and the usage of number theory concepts make 

encryptions such as RSA secure even with the usage of computers.  Number theory allows for stronger 

encryptions, and as computers get stronger, encryptions gets stronger.  As quantum computers become 

prevalent, new encryptions grow to keep information safe from unwanted eyes. 
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