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Abstract 
Let $G$ be a permutation group on a set $\Omega$ with no fixed 
points in $\Omega$ and let $m$ be a positive integer. If no 
element of $G$ moves any subset of $\Omega$ by more than $m$ 
points (that is, if $|\Gamma^g \setminus \Gamma|\leq m$ for every 
$\Gamma subseteq Omega$ and $g\in G$), and the lengths of all 
Orbits are not equal to $2$. 
Then the number $t$ of $G$-orbits in $\Omega$ is at most $2m-2$. 
Moreover, the groups attaining the maximum bound $t=2m-2$ will be classified. \vspace{.4cm} 
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Introduction: 
 
small\hspace{.5cm} Let $G$ be a permutation group on a set 
$\Omega$ with no fixed points in $\Omega$ and let $m$ be a 
Positive integer. If for a subset $\Gamma$ of $\Omega$ the size 
$|\Gamma^g \setminus \Gamma|$ is bounded, for $g\in G$, we 
Define the movement of $\Gamma$ as move ($\Gamma$) = max$_{g \in G} 
|\Gamma^g \setminus \Gamma|$. If move ($\Gamma)\leq m$ for all 
$\Gamma \subseteq \Omega$,then $G$ is said to have {\it bounded 
Movement} and the {\it movement} of $G$ is define as the maximum 
Of move($\Gamma$) over all subsets $\Gamma$, that is, 
 $$m:=move(G):= sup\{ 
|\Gamma^g\setminus\Gamma||\Gamma\subseteq\Omega, g\in G\}.$$ This 
Notion was introduced in [3]. By [3, Theorem 1], if $G$ has bounded 
Movement $m$, then $\Omega$ is finite. Moreover both the number of 
$G$-orbits in $\Omega$ and the length of each $G$-orbit are 
Bounded above by linear functions of $m$. In particular it was 
Shown that the number of $G$-orbits is at most $2m-1$. In this 
Paper we will improve this bound to $2m-2$, if the lengths of 
All orbits are not equal to $2$. If $m=1$, then 
$t=1$, $|\Omega|=2$ or $3$ and $G$ is $Z_{2}$ or $Z_{3}$ or $S_{3}$. 
So in this paper 
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We suppose that $m$ is greater than 1. In this paper we obtain the 
maximum bound of $2m-2$ for the number of $G$-orbits and give a 
Classification of all groups for which the bound $2m-2$ is 
Attained. We shall say that an orbit of permutation group is 
Nontrivial if its length is greater than 
1. We use the notation $K:P$ for semi-direct product of $K$ by $P$ 
with normal subgroup $K$. The main result is the following theorem. 
\noindent{\bf Theorem 1.1.} Let $m$ be a positive integer and 
Suppose that $G$ is a permutation group on a set $\Omega $ such 
that $G$ has no fixed points in $\Omega$, and $G$ has bounded 
Movement equal to $m$ . If the length of all orbits are not equal to 
$2$, then the number $t$ of $G$-orbits in $\Omega$ 
 is at most $2m-2$. Also 
if $t=2m-2$, then $m_{1}= m-1$ is a power of $2$, and $G$ is of order 
$32^{m-1}$, all $G$-orbits have length $2$, except one of them has 
length $3$, and the point wise 
Stabilizers of the $G$-orbits are precisely the $2m-3$ 
Distinct subgroups of 
$G$ of index $2$ and one subgroup of index $3$.\\ 
%\end{theorem} 
\indent Note that an orbit of a permutation group is non trivial 
if its length is greater than 1. The groups described below are 
Examples of permutation groups with bounded movement equal to $m$ 
Which have exactly $ 2m-2 $ nontrivial 
orbits.\\ 
\section{Examples and Preliminaries} Let 
$1\neq g \in G$ and suppose that $g$ in its disjoint cycle\\ 
Representations has $t$ nontrivial cycles of lengths 
$l_{1},...,l_{t}, say$. We might represent $g$ as \\$g = 
(a_{1}a_{2}...a _{l_{1}})(b_{1}b_{2}...b 
_{l_{_2}})...(z_{1}z_{2}...z _{l_{t}})$. Let $ \Gamma(g)$ denote a 
subset of $\Omega$ consisting $ \lfloor l _{i}/2 \rfloor $ points 
from the $i$th cycle , for each i, chosen in such a way that 
$\Gamma(g)^g \bigcap\Gamma(g)$ = \O. For example ,we could choose 
\\$\Gamma(g) = 
\{a_{2},a_{4},...,a_{k_{1}},b_{2},b_{4},...,b_{k_{2}},...,z_{2},z_{4},
...,z_{k_{t}}\},$ 
 where $k_{i} = l_{i}-1 $ if $ l_{i} $ is odd and $ k_{i} = l_{i} $ if 
$ l_{i} $ is even. Note that $\Gamma(g)$ is not uniquency 
determined as it depends on the way each cycle is written . For 
any set $\Gamma(g)$ consists of every point of very cycle of $g$. 
From the definition of $\Gamma(g)$ we see 
that$$|\Gamma(g)^g\setminus \Gamma(g)| =  |\Gamma(g)| = 
\sum_{i=1}^{t} \lfloor l_{i}/2 \rfloor.$$ The next lemma shows 
that this quantity is an upper bound for 
$|\Gamma^g\setminus\Gamma|$ for an arbitrary subset $\Gamma$ of 
$\Omega$. \\ 
\noindent{\bf Lemma 2.1.} [5, Lemma 2.1] Let $G$ be a 
permutation group on a set $\Omega$ and suppose that 
$\Gamma\subseteq\Omega$ . Then for each $g\in G$, 
$|\Gamma^g\setminus\Gamma|\leq\ \sum_{i=1}^{t}\lfloor l_{i}/2 
\rfloor $, where $l_{i}$ is the length of the $i$th cycle of $g$ 
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and $t$ is the number of nontrivial cycles of $g$ in its disjoint 
cycle representation. This upper bound is attained for 
$\Gamma=\Gamma(g)$ defined above. \\ Now in the following examples we 
will show that there 
are families of groups having bounded movement equal to $m = 1+2^{d-
1}$ and exactly $t=2m-2$ nontrivial orbits.\\ 
%\end{Lemma}. \\ 
\noindent{\bf Example 2.2.} For a positive integer $d$ and a prime 
number $3$, let $G_{1}:=\langle(123)\rangle\cong Z_{3}$ be a 
permutation group on $\Omega_{1}:=\{1,2,3\}$. Moreover, suppose that 
$G_{2}:= Z_{2}^{d}$, and $H_{1},...,H_{t}$ be all subgroups of 
index $2$ in $G$ on $\Omega_{2}:= 
\bigcup_{i=1}^{{2^{d}-1}}\Omega_{2i}$, where $\Omega_{2i}$ denotes 
the set of two cosets of $H_{i}$ in $G_{2}$, $1 \leq i \leq 
t=2^{d}-1$. Then $G_{2}$  has movement equal $2^{d-1}$ and also 
$(2^{d}-1)$ nontrivial orbits in $\Omega_{2}$. Now we consider the 
direct product $G:=G_{2} \times G_{2}$ as a permutation group on 
$\Omega$ which is the disjoint union of $\Omega_{1}$ and 
$\Omega_{2}$, and $G_{1}$ and $G_{2}$ act trivially on 
$\Omega_{2}$ and $\Omega_{1}$, respectively. Then $G$ has 
movement $1+2^{d-1}$ and $2m-2$ nontrivial orbits in $\Omega$. The set 
$\Omega$ splits into $2^{d}=2m-2$ 
orbits under $G$, which are $\Omega_{1}$ and also $2^{d-1}$ orbits of 
length $2$ in $\Omega_{2}$ . In particular, none of them is 
trivial.\\ 
 \noindent{\bf Example 2.3.} Let  $d$, $G_{2$ and $\Omega_{2}$ 
 be as in Example $2.2$. Suppose that the 
 permutation group $G_{1}:=Z_{3}:Z_{2}$ on $\Omega_{1}$ of 
 length $3$ is the symmetric group $S_{3}$. Then 
 $ G:= G_{1} \times G_{2}$ is a permutation group on $\Omega:= 
 \Omega_{1}\cup\Omega_{2}$ ( as in Example 2.2) with bounded 
 movement $m = 1+2^{d-1}$ and $2m - 2 $, non trivial orbits in 
$\Omega$.\\ 
 \noindent{\bf Example 2.4.} Let $d$, $G_{1$, $G_{2}$ and $\Omega_{2}$ 
 have the same meaning as  Examples $2.2$ and $2.3$ 
 . Suppose that the 
 permutation group $G_{1}:=Z_{3}:Z_{2}$ on $\Omega_{1}$ of 
 length $3$ is a Ferobenius group with complement $Z_{2}=<u>$ and 
kernel  $Z_{3}$ of order 
 $32^{d}$ for some positive integer $d$. Then  \\ $G_{1}\times 
G_{2}=(Z_{3}:\langle u\rangle)\times G_{2}$\\ = $Z_{3}:(\langle 
u\rangle \times G_{2})$    where $G_{2}$ acts on $Z_{3}$ trivially\\ = 
$Z_{3}:(\langle u\rangle \times \langle g\rangle Z_{2}^{d})$    where 
$G_{2}= \langle g\rangle Z_{2}^{d}$ for $g\in G_{2}$.\\ We them have a 
subgroup $Z_{3}:(\langle xg\rangle Z_{2}^{d})$ of $G_{1} \times 
G_{2}$, which is a permutation group meeting the bound. As we will see 
in the proof of Theorem $2.3$, these groups are isomorphic to 
$(Z_{3}:Z_{2})\times Z_{2}^{d}$. \\ 
When $m>1$, the classification 
in Theorem 1.1 follows immediately from the 
following theorem about subsets with movement $m$.\\ 
\\\noindent{\bf Theorem 2.3.} Let $G\l Sym(\Omega)$ be a 
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permutation group on a set $\Omega$ with $ t $ orbits for positive 
integer $t$, 
Such that the length of all orbits are not equal 
to $2$. Moreover suppose that $\G\s\Omega$ such 
that move $(\G ) = m 
>1$. Then 
$t\leq 2m-2$ and the equality holds iff\\ 
(1)  $m$ is the sum of $1$ and a power of $2$;\\ 
(2)  All G-orbits of $G$ have lengths $2$ except one orbit, say 
$\Delta$, of length $3$;\\ 
(3) The permutation group $G_{1}$ induced by $G$ on $\Omega_{1}$ is 
$Z_{3}$ or a Frobenius group $Z_{3}:Z_{2}$;\\ 
(4) The permutation group $G_{2}$ induced by $G$ on $\Delta^{'}$ is 
elementary abelian of order $2^{d}=2m-2$, and the pointwise 
stabilizers of the $G_{2}$-orbits are precisely the $2^{d}-1$ disjoint 
subgroups of $G_{2}$ of index $2$;\\ 
(5) $G$ is isomorphic to either $Z_{3}\times Z_{2}^{d}$, $(Z_{3}: 
Z_{2})\times Z_{2}^{d}$, or $(Z_{3}: Z_{2})\times Z_{2}^{d-1}$, where 
$2^{d}=2m-2$;\\ 
(6)  If one of the $G$-orbits is $3$, then the $t$ different G-orbits 
are (isomorphic to) the coset spaces of the $2^{d}=2m-2$ 
Different subgroups of index $2$ in G. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Section Proof of Theorem 2.3. 
 
From the characterizations of groups having bounded movement equal to 
$m$, and having $2m-1$ orbits (see [6]), we see that an permutation 
group can have at most $2m-2$ nontrivial orbits (see [10], Theorem 1). 
Indeed $G$ can have $2m-2$ nontrivial orbits as we see Examples $2.2$ 
and $2.3$. \\ Let $\Omega_{1}, \Omega_{2}, ..., \Omega_{d}$, be $d$ 
orbits of $G$, $\Delta=\bigcup_{i=1}^{d}\Omega_{i}$, which $d<t$, 
$\Delta^{'}=\Omega\setminus\Delta$ and $K$ the pointwise stabilizer of 
$\acute{\Delta}$. Then $K \lhd G$. For $g\in G$ we denote by 
$fix(g)=\{\alpha\in \Omega| g(\alpha)=\alpha\}$ and $Supp(g)= 
\{\alpha\in \Omega| g(\alpha)\neq\alpha\}$ the set of fixed points of 
$G$ and the support of $g$, respectively. By referring to the results 
in $[6]$ for the case having the maximum bound of orbits, we have the 
following facts: \\(i) $m-1$, is a power of $2$.\\(ii) The permutation 
group induced by $G/K$ on $\Delta^{'}$ is an elementary abelian $2$-
group $Z_{2}^{d}$ of order $2^{d}=2m-2$.\\(iii) The permutation group 
induced by $G/K$ on $\Delta^{'}$ has $2m-3$ nontrivial orbits and each 
orbit has lenght $2$.\\(iv) Each nontrivial element of $G/K$ permutes 
exactly $m-1$ of the $2m-3$ orbits. \\ (1) and (4) follow from (i) and 
(ii), respectively. By (iii) $G$ has only one orbit which is not of 
length $2$, say $\Delta$ with $|\Delta|=n_{1}$. Since every $p$-
element of $G$ is a $p$-cycle and is contained in $K$, $K$ is 
transitive on $\Delta$. Note that, $|K|=\sum_{k\in K}|fix(k)|$ and 
$|G|=\sum_{g\in G}|fix(g)|$. By $(iv)$ for each $g\in G\setminus K$,\\ 
$m\geq |\Gamma(g)|=|\Gamma_{\Delta}(g)|+|\Gamma_\Delta^{'}(g)|= 
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|\Gamma_{\Delta}(g)|+m-1$. \\Hence $|\Gamma_{\Delta}(g)|\leq 1$ and so 
$|Supp(g)\cap \Delta|\leq 2$. Thus $|Fix(g)\cap \Delta|\geq n_{1}-2$. 
Thus \\$|G|=\sum_{g\in G}|fix(g)|=\sum_{k\in K}|fix(k)|+ \sum_{g\in 
G\setminus K}|fix(g)|\geq |K|+|G\setminus K|(n_{1}-2)$,\\which means 
$n_{1}=3$. This gives $(2)$. 
  We now prove $(3)$ and $(5)$. If $G_{1}$ is regular, then  $G_{1}$ 
and $K$ are $Z_{3}$. Thus $G\simeq Z_{3}\times Z_{2}^{d}$, where 
$Z_{3}$ and $Z_{2}^{d}$ acts trivially on $\Delta^{'}$ and $\Delta$, 
respectively. Suppose $G_{1}$ is not regular. Since $G_{1}$ is of 
order $3.2^{d-1}$, it is soluble. Moreover it is a Frobenius group 
(see Theorem 11.6 in [11]). Thus $G_{1}=Z_{3}: C$ where Frobenius 
complement $C$ is a subgroup of $Aut(Z_{3})\cong Z_{2}$. Thus 
$G_{1}=Z_{3}: Z_{2}$. we let $Z_{2}=<u>$ and $Z_{3}=<v>$, and write 
$G=\{v^{i}u^{j}s| s\in Z_{2}^{d}\}$. Note that $v$ lies in $G$. If $u$ 
lies in $G$, then $G=(Z_{3}: Z_{2})\times Z_{2}^{d}$. If $u\not\in G$, 
$u^{2}$ lies in $G$. We then consider a subgroup $P=\{s\in Z_{2}^{d}| 
s\in G\}$ and a subset $Q=\{s\in Z_{2}^{d}| us\in G\}$ of $Z_{2}^{d}$. 
Since the permutation group induced by $G/K$ on $\Delta^{'}$ is an 
elementary abelian $2$-group $Z_{2}^{d}$, we have $P\cap Q= \phi$ and 
$P\cup Q=Z_{2}^{d}$. If $s^{'}$ and $s^{''}$ lie in $Q$, then 
$us^{'}us^{''}\in G$ and so does $s^{'}s^{''} 
  \in G$. This means $Q\subset \alpha P$ for some $\alpha\in 
Z_{2}^{d}\setminus P$ and $Z_{2}^{d}=P\cup \alpha P$. Hence 
\begin{center} 
    $G=\{v^{i}u^{2j+1}\alpha t|t\in P\}\cup\{v^{i}u^{2j}t|t\in 
P\}$\\=$\{v^{i}(u\alpha)^{j}t|t\in P\}$.\\ 
\end{center} 
Let $C=\{v^{i}(u\alpha)^{j}\}$. Then $P\cap C=\{1\}$ and $CP=G$. Since 
$P$ and $C$ are normal subgroups of $G$, we have $G\simeq C\times P$. 
Since $C=\{v^{i}(u\alpha)^{j}\}\simeq Z_{3}: Z_{2}$ and $P\simeq 
Z_{2}^{d-1}$, we have $G\simeq (Z_{3}: Z_{2})\times Z_{2}^{d-1}$. Thus 
the proof of Theorem $2.3$ is complete. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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