Orbits of Permutation Groups

Author
Behname Razzaghmaneshi
Department of Mathematics Talesh Branch, Islamic Azad University, Talesh, Iran Email: b_razzagh@yahoo.com

Abstract

Let $\$ \mathrm{G} \$$ be a permutation group on a set $\$ \backslash \mathbf{O m e g a} \$$ with no fixed points in $\$ \backslash$ Omega and let $\$ \mathrm{~m}$ be a positive integer. If no element of $\$ \mathrm{G} \$$ moves any subset of $\$ \backslash \mathbf{O m e g a} \$$ by more than $\$ \mathrm{~m}$ \$ points (that is, if $\$ \mid \backslash G a m m a \wedge g \$ setminus \backslash Gammal \backslash leq $\mathrm{m} \$$ for every \$\Gamma subseteq Omega\$ and $\$ \mathbf{g} \backslash$ in $\mathrm{G} \$$), and the lengths of all Orbits are not equal to $\$ \mathbf{\$}$. Then the number $\$ \mathbf{t} \$$ of $\$ \mathbf{G} \$$-orbits in $\$ \backslash O m e g a \$$ is at most $\$ 2 \mathrm{~m}-2 \$$. Moreover, the groups attaining the maximum bound $\$ \mathrm{t}=2 \mathrm{~m}-2 \$$ will be classified. \vspace\{. 4 cm$\}$

Keywords: permutation group; bounded movement; orbits 2000 AMS classification subjects: 20B25

Introduction:

small\hspace\{. 5 cm$\}$ Let $\$ G \$$ be a permutation group on a set
\$ \backslash OmegaS with no fixed points in $\$ \backslash$ omegas and let $\$ \mathrm{~m}$, be a
Positive integer. If for a subset $\$ \backslash$ GammaS of $\$ \backslash$ omegaS the size
$\$ \ \backslash G a m m a^{\wedge} g$ \setminus \Gammal\$ is bounded, for $\$ g \backslash i n G \$$ we
Define the movement of $\$ \backslash$ Gamma\$ as move (\$ \backslash Gamma\$) $=\max \$\{g$ \in G\}
$\|$ Gamma^g \setminus \Gammal\$. If move (\$\Gamma) \leq m\$ for all
\$ \backslash Gamma \subseteq \omega\$, then $\$ G \$$ is said to have $\{\backslash i t$ bounded Movement\} and the $\{$ \it movement\} of $\$ G \$$ is define as the maximum Of move (\$\Gamma\$) over all subsets \$\Gamma\$, that is,
\$\$m:=move (G) := sup
{ }
$\mid \backslash G a m m a^{\wedge} g \backslash$ setminus \Gamma||\Gamma\subseteq\Omega, $\left.g \backslash i n G \backslash\right\} . \$ \$$ This Notion was introduced in [3]. By [3, Theorem 1], if \$G\$ has bounded Movement $\$ m \$$, then $\$ \backslash$ Omega\$ is finite. Moreover both the number of \$G\$-orbits in $\$ \backslash$ Omega\$ and the length of each $\$ G \$$-orbit are Bounded above by linear functions of \$m\$. In particular it was Shown that the number of $\$ G \$$-orbits is at most $\$ 2 m-1 \$$. In this Paper we will improve this bound to $\$ 2 m-2 \$$, if the lengths of All orbits are not equal to $\$ 2 \$$. If $\$ m=1 \$$, then
$\$ t=1 \$, \quad \$ \mid$ Omega| $=2 \$$ or $\$ 3 \$$ and $\$ G \$$ is $\$ Z_{-}\{2\} \$$ or $\$ Z_{Z}\{3\} \$$ or $\$ S _\{3\} \$$. So in this paper

We suppose that $\$ m \$$ is greater than 1. In this paper we obtain the maximum bound of $\$ 2 m-2 \$$ for the number of $\$ G \$-o r b i t s$ and give a Classification of all groups for which the bound $\$ 2 m-2 \$$ is Attained. We shall say that an orbit of permutation group is Nontrivial if its length is greater than

1. We use the notation $\$ \mathrm{~K}: \mathrm{P}$ \$ for semi-direct product of $\$ \mathrm{~K}$. by $\$ P \$$ with normal subgroup \$K\$. The main result is the following theorem. \noindent\{\bf Theorem 1.1.\} Let \$m\$ be a positive integer and Suppose that $\$ G \$$ is a permutation group on a set $\$ \backslash$ Omega $\$$ such that $\$ G \$$ has no fixed points in $\$ \backslash$ Omega\$, and $\$ G \$$ has bounded Movement equal to \$m\$. If the length of all orbits are not equal to \$2\$, then the number $\$ t \$$ of $\$ G \$-o r b i t s$ in $\$ \backslash$ Omega\$
is at most $\$ 2 m-2 \$$. Also
if $\$ t=2 m-2 \$$, then $\$ m _\{1\}=m-1 \$$ is a power of $\$ 2 \$$, and $\$ G \$$ is of order

length $\$ 3 \$$, and the point wise
Stabilizers of the $\$ G \$$-orbits are precisely the $\$ 2 m-3 \$$
Distinct subgroups of
\$G\$ of index $\$ 2 \$$ and one subgroup of index $\$ 3 \$. \ \$
\% \end\{theorem \} }
\indent Note that an orbit of a permutation group is non trivial
if its length is greater than 1. The groups described below are Examples of permutation groups with bounded movement equal to \$m\$ Which have exactly \$ $2 m-2$ \$ nontrivial
orbits.

\section\{Examples and Preliminaries\} Let

$\$ 1 \backslash n e q g$ lin $G \$$ and suppose that $\$ g \$$ in its disjoint cycle

Representations has \$t\$ nontrivial cycles of lengths
\$l_\{1\},..., 1 _ $\{t\}$, say\$. We might represent $\$ g \$$ as $\backslash \$ \mathrm{~g}=$
(a_\{1\}a_\{2\}...a $\left.\left\{1 _\{1\}\right\}\right)\left(b _\{1\} b _\{2\} . . . b\right.$
_ $\left.\left\{\overline{1} _\{2 \overline{\}}\}\right) . . .\left(z_{-} \overline{\{ }\right\} \bar{z}_{-}\{2\} \ldots \bar{z} \quad\{1-\{t\}\}\right) \$$. Let $\$ \backslash \operatorname{Gamma}(g) \$$ denote a subsēt of \$\omeğas consisting $\$$ Tlfloor l_\{i\}/2 \rfloor $\$$ points from the \$i\$th cycle, for each i, chosen in such a way that
$\$ \backslash \operatorname{Gamma}(\mathrm{~g})^{\wedge} \mathrm{g}$ \bigcap\Gamma(g)\$ = \O. For example, we could choose
$\backslash \backslash \backslash$ Gamma (g) =
$\backslash\left\{a_{-}\{2\}, a_{-}\{4\}, \ldots, a_{-}\left\{k_{-}\{1\}\right\}, b_{-}\{2\}, b_{-}\{4\}, \ldots, b_{-}\left\{k_{-}\{2\}\right\}, \ldots, z_{-}\{2\}, z_{-}\{4\}\right.$,
..., z_\{k_\{t\}\}
,$\$ }$
where $\$ \overline{\mathrm{k}}$ _ $\{\mathrm{i}\}=l_{_}\{i\}-1$ \$ if $\$ l_{-}\{i\} \$$ is odd and $\$ k_{-}\{i\}=l_{-}\{i\}$ if
\$ l_\{i\} \$ is even. Note that \$ Gämma $^{-}(\mathrm{g})$ \$ is not uniquency
determined as it depends on the way each cycle is written . For
any set $\$ \backslash$ Gamma (g) $\$$ consists of every point of very cycle of $\$ \mathrm{~g}$.
From the definition of $\$ \backslash$ Gamma (g) \$ we see
that\$\$|\Gamma (g)^ $\mathrm{g} \backslash$ setminus \Gamma (g)| $=|\backslash \operatorname{Gamma}(\mathrm{g})|=$
\sum_\{i=1\}^\{t\} \lfloor l_\{i\}/2 \rfloor.\$\$ The next lemma shows
that this quantity is an upper bound for
\$। \backslash Gamma^ $g \backslash$ setminus \backslash Gammal $\$$ for an arbitrary subset $\$ \backslash$ Gamma \$\Omega\$.

\noindent\{\bf Lemma 2.1.\} [5, Lemma 2.1] Let $\$ \mathrm{G} \$ \mathrm{be}$ a permutation group on a set $\$ \backslash$ Omega\$ and suppose that
\$ \Gamma \subseteq\Omega\$. Then for each $\$ g$ \in $G \$$,
$\$ \mid \backslash$ Gamma^g\setminus \Gamma|\leq\ \sum_\{i=1\}^\{t\}\lfloor l_\{i\}/2
\rfloor $\$$, where $\$ 1 _\{i\} \$$ is the length of the $\$ i \$$ th cycle of $\$ g \$$
and $\$ t$ is the number of nontrivial cycles of $\$ g \$$ in its disjoint cycle representation. This upper bound is attained for
$\$ \backslash$ Gamma=\Gamma(g)\$ defined above.
 Now in the following examples we will show that there
are families of groups having bounded movement equal to $\$ m=1+2^{\wedge}\{d-$
$1\} \$$ and exactly $\$ t=2 \mathrm{~m}-2 \$$ nontrivial orbits. $\backslash \backslash$
\% \end \{ Lemma } \text { .
}
\noindent\{\bf Example 2.2.\} For a positive integer \$d\$ and a prime number \$3\$, let \$G_\{1\}:=\langle(123) \rangle\cong Z_\{3\}\$ be a permutation group on $\$ \backslash$ Omega_\{1\}:=
{1,2,3
}\$. Moreover, suppose that \$G_\{2\}:= Z_\{2\}^\{d\}\$, and \$H_\{1\},..., H_\{t\}\$ be all subgroups of index $\$ 2$ in $\$ \mathrm{G}$ \$ on $\$ \backslash$ Omega_\{2\}:=
\bigcup_\{i=1\}^\{\{2^\{d\}-1\}\}\Omega_\{2i\}\$, where \$ the set of two cosets of \$H_\{i\}\$ in \$G_\{2\}\$, \$1 \leq i \leq $t=2^{\wedge}\{d\}-1 \$$. Then $\$ G _\{2\}$ has movement equal $\$ 2^{\wedge}\{d-1\} \$$ and also \$(2^\{d\}-1) \$ nontrivial orbits in $\$ \backslash$ Omega_\{2\}\$. Now we consider the direct product $\$ \mathrm{G}:=\mathrm{G} _\{2\}$ \times $\mathrm{G}_{1}\{2\} \$$ as a permutation group on \$ ${ }^{\text {Omegas }}$ which is the disjoint union of $\$ \backslash$ Omega_\{1\}\$ and \$ Omega_\{2\}\$, and \$G_\{1\}\$ and \$G_\{2\}\$ act trivially on
\$ \backslash Omega_\{2\}\$ and $\$ \backslash$ Omega_\{1\}\$, respectively. Then $\$ \mathrm{G} \$$ has
movement $\$ 1+2 \wedge\{d-1\} \$$ and $\$ 2 m-2 \$$ nontrivial orbits in $\$ \backslash O m e g a \$$. The set \$ \backslash Omega splits into $\$ 2^{\wedge}\{d\}=2 m-2 \$$
orbits under $\$ \mathrm{G} \$$, which are $\$ \backslash$ Omega_\{1\}\$ and also $\$ 2^{\wedge}\{d-1\} \$$ orbits of
length $\$ 2 \$$ in $\$ \backslash$ Omega_\{2\}\$. In particular, none of them is
trivial. $\backslash \backslash$
\noindent $\{\backslash$ bf Example 2.3.\} Let $\$ d \$$, $\$$ G_\{2\$ and $\$ \backslash$ Omega_\{2\}\$
be as in Example $\$ 2.2 \$$. Suppose that the
permutation group $\$ \mathrm{G}_{-}\{1\}:=\mathrm{Z} _\{3\}: Z _\{2\}$ on $\$ \backslash$ Omega_\{1\}\$ of length $\$ 3 \$$ is the symmetric group $\$ \mathrm{~S} _\{3\}$. Then
\$ G:= G_\{1\} \times G_\{2\}\$ is a permutation group on \$\Omega:=
\backslash Omega_\{1\}\cup\Omega_\{2\}\$ (as in Example 2.2) with bounded movement $\$ m=1+2^{\wedge}\left\{d^{-1}\right\} \$$ and $\$ 2 m-2 \$$, non trivial orbits in
\$\omega\$.

\noindent\{\bf Example 2.4.\} Let \$d\$, \$G_\{1\$, \$G_\{2\}\$ and \$\Omega_\{2\}\$
have the same meaning as Examples $\$ 2.2$ and $\$ 2.3$ \$
. Suppose that the
permutation group $\$ \mathrm{G}_{\mathrm{o}}\{1\}:=Z_{-}\{3\}: Z_{-}\{2\}$ on $\$ \backslash$ Omega_\{1\}\$ of
length $\$ 3 \$$ is a Ferobenius group with complement $\$ Z_{\text {_ }}\{2\}=<u>\$$ and kernel \$Z $\{3\} \$$ of order
$\$ 32^{\wedge}\{d\} \$$ for some positive integer $\$ d \$$. Then $\backslash \backslash \$ G_{i}\{1\} \backslash t i m e s$
$G_{-}\{2\}=\left(Z_{-}\{3\}: \backslash\right.$ langle $\left.u \backslash r a n g l e\right) \backslash$ times $G_{-}\{2\} \$ \backslash \backslash=\$ Z\{3\}:(\backslash$ langle $u \backslash$ rangle \backslash times $\left.G_{-}\{2\}\right) \$$ where $\$ G_{-}\{2\}$ \$ acts on $\$ \bar{Z} _\{3\} \$$ trivially $\backslash \backslash=$ \$Z_\{3\}: (\langle u\rangle \times \langle g\rangle Z_ $\{2\} \wedge\{d\}) \$$ where $\$ G_{-}^{-}\{2\}=\backslash$ langle $g \backslash r a n g l e ~ Z-\{2\} \wedge\{d\} \$$ for $\$ g \backslash i n ~ G _\{2\} \$. \backslash \backslash$ We them have a subgroup \$Z_\{3\}:(\langle xg\rangle Z_\{2\}^\{d\})\$ of \$G_\{1\} \times
G_\{2\}\$, which is a permutation group meeting the bound. As we will see
in the proof of Theorem $\$ 2.3$, these groups are isomorphic to
$\$\left(Z_{-}\{3\}: Z_{-}\{2\}\right)$ times $Z_{-}\{2\}^{\wedge}\{d\} \$$. $\backslash \backslash$
When $\$ m>1 \overline{\$}$, the classification
in Theorem 1.1 follows immediately from the
following theorem about subsets with movement \$m\$.

$\ \backslash \backslash n o i n d e n t\{\backslash b f$ Theorem 2.3.\} Let $\$ G \backslash 1$ Sym(\Omega) \$ be a
permutation group on a set \$\Omega\$ with \$ t \$ orbits for positive integer \$t\$,
Such that the length of all orbits are not equal
to $\$ 2 \$$. Moreover suppose that $\$ \backslash G \backslash s \backslash O m e g a \$ ~ s u c h ~$
that move $\$(\backslash \mathrm{G})=\mathrm{m}$
>1\$. Then
\$t\leq $2 \mathrm{~m}-2$ \$ and the equality holds iff
(1) $\$ m$ is is the sum of $\$ 1 \$$ and a power of $\$ 2$; $\backslash \backslash$
(2) All G-orbits of $\$ \mathrm{G} \$ \mathrm{have}$ lengths $\$ 2$ except one orbit, say
\$\Delta\$, of length $\$ 3 \$; \backslash$
(3) The permutation group \$G_\{1\}\$ induced by \$G\$ on \$\Omega_\{1\}\$ is \$Z_\{3\}\$ or a Frobenius group \$Z_\{3\}:Z_\{2\}\$;

(4) The permutation group \$G_\{2\}\$ induced by \$G\$ on \$\Delta^\{'\}\$ is elementary abelian of order $\overline{\$} 2^{\wedge}\{d\}=2 m-2 \$$, and the pointwise
stabilizers of the $\$ \mathrm{G}_{\mathrm{Z}}\{2\}$-orbits are precisely the $\$ 2^{\wedge}\{\mathrm{d}\}-1 \$$ disjoint subgroups of $\$ \mathrm{G} _\{2\} \$$ of index $\$ 2 \$; \backslash$
(5) \$G\$ is isomorphic to either \$Z_\{3\}\times Z_\{2\}^\{d\}\$, \$(Z_\{3\}: $\left.Z_{-}\{2\}\right) \backslash$ times $Z_{-}\{2\} \wedge\{d\}$, or $\$\left(Z_{-}\{3\}: Z_{-}\{2\}\right) \backslash$ times $Z_{-}\{2\} \wedge\{d-1\}$, where $\$ 2 \wedge\{d\}=2 m-2 \$; \backslash \backslash$
 are (isomorphic to) the coset spaces of the $\$ 2^{\wedge}\{d\}=2 m-2 \$$
Different subgroups of index $\$ 2 \$$ in G.

Section Proof of Theorem 2.3.

From the characterizations of groups having bounded movement equal to \$m\$, and having $\$ 2 m-1 \$$ orbits (see [6]), we see that an permutation group can have at most $\$ 2 \mathrm{~m}-2 \$$ nontrivial orbits (see [10], Theorem 1). Indeed $\$ \mathrm{G} \$$ can have $\$ 2 \mathrm{~m}-2$ \$ nontrivial orbits as we see Examples $\$ 2.2 \$$ and $\$ 2.3 \$. \quad \backslash$ Let $\$ \backslash$ Omega_\{1\}, \Omega_\{2\}, ..., \Omega_\{d\}\$, be \$d\$ orbits of $\$ G \$, \$ \backslash \operatorname{Delta=\ bigcup_ \{ i=1\} \wedge \{ d\} \backslash Omega_ \{ i\} \$,~which~\$ d<t\$,~}$

 \$fix $(\mathrm{g})=\backslash\{\backslash \mathrm{alpha}$ \in \backslash Omega| $g(\backslash a l p h a)=\backslash a l p h a \backslash\}$ and $\$ \mathrm{Supp}(\mathrm{g})=$
{\alpha\in \Omega| } g (\backslash a l p h a) \backslash n e q \backslash a l p h a \backslash \} \$ the set of fixed points of \$G\$ and the support of $\$ \mathrm{~g}$, respectively. By referring to the results in $\$[6] \$$ for the case having the maximum bound of orbits, we have the following facts: $\backslash \backslash(i)$ \$m-1\$, is a power of $\$ 2 \$. \backslash \backslash(i i)$ The permutation group induced by $\$ \mathrm{G} / \mathrm{K} \$$ on $\$ \backslash \mathrm{Delta}^{\wedge}\{1\} \$$ is an elementary abelian $\$ 2 \$-$ group $\$ 2 _\{2\} \wedge\{d\} \$$ of order $\$ 2^{\wedge}\{d\}=2 m-2 \$. \backslash \backslash(i i i)$ The permutation group induced by $\$ \mathrm{G} / \mathrm{K} \$$ on $\$ \backslash \mathrm{Delta}{ }^{\wedge}\{\mathrm{h}\}$ has $\$ 2 \mathrm{~m}-3 \$$ nontrivial orbits and each orbit has lenght $\$ 2 \$. \backslash \backslash(i v)$ Each nontrivial element of $\$ \mathrm{G} / \mathrm{K} \$ \mathrm{permutes}$ exactly $\$ m-1 \$$ of the $\$ 2 m-3 \$$ orbits. $\ \backslash(1)$ and (4) follow from (i) and (ii), respectively. By (iii) $\$ \mathrm{G} \$ \mathrm{has}$ only one orbit which is not of length $\$ 2$, say $\$ \backslash$ Delta\$ with $\$ \mid \backslash$ Deltal=n_\{1\}\$. Since every $\$ p \$-$
 transitive on $\$ \backslash$ Delta\$. Note that, $\$|K|=\backslash$ sum_\{k\in $K\}|f i x(k)| \$$ and \$|G|=\sum_\{g\in G\}|fix(g)|\$. By $\$(i v) \$$ for each $\$ g \backslash i n ~ G \backslash s e t m i n u s ~ K \$, ~ \ \ ~$ \$m\geq $\mid \backslash$ Gamma (g) |=| \backslash Gamma_\{\Delta\} (g) |+|\Gamma_\Delta^\{'\} (g)|=
$\mid \backslash$ Gamma_\{\Delta\} (g)|+m-1\$.
Hence $\$ \mid \backslash$ Gamma_\{\Delta\} (g) |\leq 1\$ and so
 Thus $\backslash \backslash \$|G|=\backslash$ sum_\{g\in $G\}|f i x(g)|=\backslash$ sum_\{k\in $K\}|f i x(k)|+\backslash s u m _\{g \backslash i n$ $G \backslash$ setminus $K\}|f i x(g)| \backslash g e q ~|K|+|G \backslash s e t m i n u s ~ K|\left(n _\{1\}-2\right) \$, \ \backslash w h i c h ~ m e a n s ~$ \$n_\{1\}=3\$. This gives \$(2)\$.
 and $\$ K \$$ are $\$ Z _\{3\} \$$. Thus $\$ G \backslash$ simeq $Z _\{3\} \backslash$ times $Z _\{2\} \wedge\{d\} \$$, where \$Z_\{3\}\$ and \$Z_\{2\}^\{d\}\$ acts trivially on \$ ${ }^{\text {(}}$ Delta^\{'\}\$ and \$\Delta\$, respectively. Suppose \$G_\{1\}\$ is not regular. Since \$G_\{1\}\$ is of order $\$ 3.2^{\wedge}\{d-1\} \$$, it is soluble. Moreover it is a Frobenius group (see Theorem 11.6 in [11]). Thus $\$ \mathrm{G}_{2}\{1\}=Z _\{3\}: \mathrm{C} \$$ where Frobenius complement \$C\$ is a subgroup of \$Aut (Z_\{3\}) \cong Z_\{2\}\$. Thus \$G_\{1\}=Z_\{3\}: Z_\{2\}\$. we let $\$ \mathrm{Z} _\{2\}=<u>\$$ and $\$ Z _\{3\}=<\mathrm{v}>$ \$, and write $\$ G=\backslash\left\{v^{\wedge}\{\bar{i}\} u^{\wedge}\{j\} \bar{s} \mid\right.$ s in $\left.Z_{-}\{2\} \wedge\{d\} \backslash\right\} \$$. Note that $\overline{\$} v \$$ lies in $\$ G \$$. If $\$ u \$$ lies in $\$ G \$$, then $\$ G=\left(Z _\{3\}: Z_{-}\{2\}\right) \backslash$ times $Z_{-}\{2\}^{\wedge}\{d\} \$$. If $\$ u \backslash n o t \backslash i n ~ G \$$, \$u^\{2\}\$ lies in $\$ G \$$. We then consider a subgroup $\$ \mathrm{P}=\backslash\left\{\mathrm{s} \backslash i n Z_{\text {Z }}\{2\} \wedge\{d\} \mid\right.$
 Since the permutation group induced by \$G/K\$ on \$\Delta^\{'\}\$ is an elementary abelian $\$ 2 \$$-group $\$ Z _\{2\}^{\wedge}\{d\} \$$, we have $\$ P \backslash c a p ~ Q=\backslash p h i \$$ and $\$ P \backslash c u p ~ Q=Z _\{2\}^{\wedge}\{d\} \$$. If $\$ s^{\wedge}\{'\} \$$ and $\$ s^{\wedge}\left\{{ }^{\prime} '\right\} \$$ lie in $\$ Q \$$, then \$us^\{'\}us^\{''\}\in G\$ and so does \$s^\{'\}s^\{''\}
\in G\$. This means $\$ Q$ \subset \alpha P for some $\$ \backslash a l p h a \backslash i n$ $Z _\{2\}^{\wedge}\{d\} \backslash$ setminus $P \$$ and $\$ Z _\{2\}^{\wedge}\{d\}=P \backslash c u p ~ \ a l p h a ~ P \$$. Hence
\backslash begin $\{$ center \}
$\$ G=\backslash\left\{v^{\wedge}\{i\} u^{\wedge}\{2 j+1\} \backslash a l p h a t \mid t \backslash i n P \backslash\right\} \backslash c u p \backslash\left\{v^{\wedge}\{i\} u^{\wedge}\{2 j\} t \mid t \backslash i n\right.$ $P \backslash\} \$ \backslash=\$ \backslash\left\{v^{\wedge}\{i\}(u \backslash a l p h a)^{\wedge}\{j\} t \mid t \backslash i n P \backslash\right\} \$. \backslash \backslash$
\end \{center\} }
Let $\$ C=\backslash\left\{\mathrm{v}^{\wedge}\{i\}(\mathrm{u} \backslash a l p h a)^{\wedge}\{j\} \backslash\right\} \$$. Then $\$ P \backslash c a p ~ C=\backslash\{1 \backslash\} \$$ and $\$ C P=G \$$. Since \$P\$ and \$C\$ are normal subgroups of \$G\$, we have \$G\simeq C\times P\$. Since $\$ C=\backslash\left\{v^{\wedge}\{i\}(u \backslash a l p h a)^{\wedge}\{j\} \backslash\right\} \backslash$ simeq $Z _\{3\}: Z _\{2\} \$$ and $\$ P \backslash$ simeq $Z_{-}\{2\} \wedge\{d-1\}$, we have $\$ G \backslash$ simeq $\left(Z_{-}\{3\}: \bar{Z}_{-}\{2\}\right) \backslash \bar{t}$ imes $Z_{-}\{2\} \wedge\{d-1\} \$$. Thus the proof of Theorem $\$ 2.3 \$$ is complete.

Bibliography

bibitem\{barrgold\} L. Brailovsky, Structure of quasi-invariant sets, \{\it Arch.Math.\},\{\bf 59\} (1992),322-326.
Brailovsky, D.Pasechnix ,
C.E.Praeger, Subsets close to invarianr subset of quasi-invariant subsets for group actions ,,\{\it Proc.Amer. Math.Soc. \}, \{ \bf123\}(1995), 2283-2295.
C.E. Praeger, On permutation groups with bounded movement, \{\it J.Algebra \},\{\bf144\}(1991), 436-442.
C.E. Praeger, The separation theorem for group actions, in "ordered Groups and Infinite
Groups"(W.charles Holland, Ed.), \{\it Kluwer Academic, Dordrecht/ Boston/ Lond\}, 1995.
A. Hassani,M. Khayaty,E.I. Khukhro and C.E. Praeger, Transitive permutation groups with bounded movement having maximum degree.\{\it J. Algebra\}, \{ \bf214\}(1999), 317-337.

GPH - Journal of Mathematics
J.R. Cho, P.S. Kim, and C.E. Praeger, The maximal number of orbits of a
permutation Group with Bounded Movement, \{\it J.Algebra\}, \{\bf214\} (1999), 625-630.
P.M. Neumann, The structure of finitary Permutation groups, \{\it Arch. Math.
(Basel) \} \{ \bf27\}(1976),3-17.
B.H. Neumann, Groups covered by permutable subsets, \{ it J. London Math soc.\}, \{\bf29\}(1954), 236-248.
P.M. Neumann, C.E.Praeger, On the Movement of permutation Group, \{\it J.Algebra\}, \{\bf214\},
(1999) 631-635.
P.S. Kim, acd Y. Kim, Certain groups with bounded movement having the maximal number of orbits. \{\it J.
Algebra\}, \{ \bf252\}
(2002), 74-83.
H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1968.

