GENE EXPRESSION PROFILE IN SALMONELLA ENTERITIDIS IN EGG ALBUMEN BASED ON PATHOGENICITY VIA GEO-ANALYSIS

  • Citra Sari Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine Universitas Brawijaya, Puncak Dieng Eksklusif Kalisongo Dau Malang, East Java, Indonesia, 65151 https://orcid.org/0009-0005-1850-4818
  • Fajar Shodiq Permata Laboratory of Veterinary Anatomy, Histology and Embriology, Faculty of Veterinary Medicine Universitas Brawijaya, Puncak Dieng Eksklusif Kalisongo Dau Malang, East Java, Indonesia, 65151 https://orcid.org/0000-0003-0971-6278
  • Aryo Tedjo Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta, Indonesia, 10430 https://orcid.org/0000-0001-8998-3418
Keywords: contamination, foodborne, gene expression, GEO Analysis, pathogenicity

Abstract

Salmonella enteriditis, a bacterium known for contaminating egg albumen, serves as a significant causative agent of foodborne illnesses in humans. These illnesses manifest with a spectrum of symptoms ranging from mild to severe, contingent upon the varying pathogenicity levels of Salmonella enteritidis. The central objective of this research endeavor was to meticulously analyze the gene expression profile of Salmonella enteritidis in egg albumin, correlating it with the pathogen's varying pathogenicity levels. This analysis was conducted utilizing the Gene Expression Omnibus (GEO) Analysis framework.A comprehensive examination of 18 genomic databases specific to Salmonella enteritidis, extracted from the GEO Dataset (GSE33102), was undertaken. These databases were methodically clustered in accordance with the pathogenicity gradations of the bacteria. Subsequently, an in-depth analysis and visualization of the data were performed using GEO2R. The analytical findings revealed a notable variance in gene expression, with 35-46 genes demonstrating significant differences (Padj<0.05) when comparing groups with High Pathogenicity and High-Medium Pathogenicity against those with Low PathogenicityThe study culminated in the identification of six distinct gene expressions that effectively discriminate between Salmonella enteritidis groups classified as High, High-Medium, and Low Pathogenicity. This discovery propels the hypothesis that these genes could potentially serve as specific markers for the presence of Salmonella enteritidis in contaminated eggs. Such markers would be instrumental in the early detection of foodborne diseases. However, it is imperative to conduct further research to ascertain the viability of these candidate genes as reliable indicators for the early detection of this pathogen in contaminated food sources.

Downloads

Download data is not yet available.

References

Ayariga, J. A., Gildea, L., Wu, H., & Villafane, R. (2021). The E34 Phage Tailspike Protein: An in vitro characterization, Structure Prediction, Potential Interaction with S. newington LPS and Cytotoxicity Assessment to Animal Cell Line [Preprint]. Microbiology. https://doi.org/10.1101/2021.09.20.461090
Chandrasekaran, M., Raman, C., Karthikeyan, K., & Paramasivan, M. (2019). Functional Annotation of Hypothetical Proteins Derived from Suppressive Subtraction Hybridization (SSH) Analysis Shows NPR1 (Non-Pathogenesis Related)-Like Activity. Agronomy, 9(2), 57. https://doi.org/10.3390/agronomy9020057
Chousalkar, K. K., Sexton, M., McWhorter, A., Hewson, K., Martin, G., Shadbolt, C., & Goldsmith, P. (2017). Salmonellatyphimurium in the Australian egg industry: Multidisciplinary approach to addressing the public health challenge and future directions. Critical Reviews in Food Science and Nutrition, 57(12), 2706–2711. https://doi.org/10.1080/10408398.2015.1113928
Clavijo, R. I., Loui, C., Andersen, G. L., Riley, L. W., & Lu, S. (2006). Identification of Genes Associated with Survival of Salmonella enterica Serovar Enteritidis in Chicken Egg Albumen. Applied and Environmental Microbiology, 72(2), 1055–1064. https://doi.org/10.1128/AEM.72.2.1055-1064.2006
Clough, E., & Barrett, T. (2016). The Gene Expression Omnibus Database. In E. Mathé & S. Davis (Eds.), Statistical Genomics (Vol. 1418, pp. 93–110). Springer New York. https://doi.org/10.1007/978-1-4939-3578-9_5
Davies, R. H., & Breslin, M. (2003). Investigation of Salmonella contamination and disinfection in farm egg-packing plants. Journal of Applied Microbiology, 94(2), 191–196. https://doi.org/10.1046/j.1365-2672.2003.01817.x
Desler, C., Suravajhala, P., Sanderhoff, M., Rasmussen, M., & Rasmussen, L. J. (2009). In Silico screening for functional candidates amongst hypothetical proteins. BMC Bioinformatics, 10(1), 289. https://doi.org/10.1186/1471-2105-10-289
Dunstan, R. A., Pickard, D., Dougan, S., Goulding, D., Cormie, C., Hardy, J., Li, F., Grinter, R., Harcourt, K., Yu, L., Song, J., Schreiber, F., Choudhary, J., Clare, S., Coulibaly, F., Strugnell, R. A., Dougan, G., & Lithgow, T. (2019). The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi‐like protein tail fibre. Molecular Microbiology, 112(6), 1831–1846. https://doi.org/10.1111/mmi.14396
Eswarappa, S. M., & Fox, P. L. (2013). Citric acid cycle and the origin of MARS. Trends in Biochemical Sciences, 38(5), 222–228. https://doi.org/10.1016/j.tibs.2013.01.005
Fels, U., Gevaert, K., & Van Damme, P. (2017). Proteogenomics in Aid of Host–Pathogen Interaction Studies: A Bacterial Perspective. Proteomes, 5(4), 26. https://doi.org/10.3390/proteomes5040026
Freiberg, A., Morona, R., Van Den Bosch, L., Jung, C., Behlke, J., Carlin, N., Seckler, R., & Baxa, U. (2003). The Tailspike Protein of Shigella Phage Sf6. Journal of Biological Chemistry, 278(3), 1542–1548. https://doi.org/10.1074/jbc.M205294200
Galperin, M. Y. (2004). “Conserved hypothetical” proteins: Prioritization of targets for experimental study. Nucleic Acids Research, 32(18), 5452–5463. https://doi.org/10.1093/nar/gkh885
Gantois, I., Eeckhaut, V., Pasmans, F., Haesebrouck, F., Ducatelle, R., & Van Immerseel, F. (2008). A comparative study on the pathogenesis of egg contamination by different serotypes of Salmonella. Avian Pathology, 37(4), 399–406. https://doi.org/10.1080/03079450802216611
Gendre, J., Ansaldi, M., Olivenza, D. R., Denis, Y., Casadesús, J., & Ginet, N. (2022). Genetic Mining of Newly Isolated Salmophages for Phage Therapy. International Journal of Molecular Sciences, 23(16), 8917. https://doi.org/10.3390/ijms23168917
Golby, P., Davies, S., Kelly, D. J., Guest, J. R., & Andrews, S. C. (1999). Identification and Characterization of a Two-Component Sensor-Kinase and Response-Regulator System (DcuS-DcuR) Controlling Gene Expression in Response to C 4 -Dicarboxylates in Escherichia coli. Journal of Bacteriology, 181(4), 1238–1248. https://doi.org/10.1128/JB.181.4.1238-1248.1999
Hews, C. L., Pritchard, E. J., & Rowley, G. (2019). The Salmonella Specific, σE-Regulated, STM1250 and AgsA, Function With the sHsps IbpA and IbpB, to Counter Oxidative Stress and Survive Macrophage Killing. Frontiers in Cellular and Infection Microbiology, 9, 263. https://doi.org/10.3389/fcimb.2019.00263
Humphrey, T. J., Whitehead, A., Gawler, A. H. L., Henley, A., & Rowe, B. (1991). Numbers of Salmonella enteritidis in the contents of naturally contaminated hens’ eggs. Epidemiology and Infection, 106(3), 489–496. https://doi.org/10.1017/S0950268800067546
Jia, S., McWhorter, A. R., Andrews, D. M., Underwood, G. J., & Chousalkar, K. K. (2020). Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines, 8(4), 696. https://doi.org/10.3390/vaccines8040696
Kader, Md. A., Ahammed, A., Khan, Md. S., Al Ashik, S. A., Islam, Md. S., & Hossain, M. U. (2022). Hypothetical protein predicted to be tumor suppressor: A protein functional analysis. Genomics & Informatics, 20(1), e6. https://doi.org/10.5808/gi.21073
Kang, H., Loui, C., Clavijo, R. I., Riley, L. W., & Lu, S. (2006). Survival characteristics of Salmonella enterica serovar Enteritidis in chicken egg albumen. Epidemiology and Infection, 134(5), 967–976. https://doi.org/10.1017/S0950268806006054
Karinou, E., Compton, E. L. R., Morel, M., & Javelle, A. (2013). The E scherichia coli SLC26 homologue YCHM ( DAUA ) is a C 4 ‐dicarboxylic acid transporter. Molecular Microbiology, 87(3), 623–640. https://doi.org/10.1111/mmi.12120
Kim, S.-H., Park, J.-H., Lee, B.-K., Kwon, H.-J., Shin, J.-H., Kim, J., & Kim, S. (2012). Complete Genome Sequence of Salmonella Bacteriophage SS3e. Journal of Virology, 86(18), 10253–10254. https://doi.org/10.1128/JVI.01550-12
Ko, Y.-G., Park, H., & Kim, S. (2002). Novel regulatory interactions and activities of mammalian tRNA synthetases. PROTEOMICS, 2(9), 1304–1310. https://doi.org/10.1002/1615-9861(200209)2:9<1304::AID-PROT1304>3.0.CO;2-E
Li, B., Ju, F., Cai, L., & Zhang, T. (2015). Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach. Environmental Science & Technology, 49(17), 10492–10502. https://doi.org/10.1021/acs.est.5b02345
Lin, T.-H., Huang, S.-C., & Shaw, G.-C. (2012). Reexamining Transcriptional Regulation of the Bacillus subtilis htpX Gene and the ykrK Gene, Encoding a Novel Type of Transcriptional Regulator, and Redefining the YkrK Operator. Journal of Bacteriology, 194(24), 6758–6765. https://doi.org/10.1128/JB.01258-12
Liu, J., Feng, M., Li, S., Nie, S., Wang, H., Wu, S., Qiu, J., Zhang, J., & Cheng, W. (2020). Identification of molecular markers associated with the progression and prognosis of endometrial cancer: A bioinformatic study. Cancer Cell International, 20(1), 59. https://doi.org/10.1186/s12935-020-1140-3
Lu, S., Killoran, P. B., & Riley, L. W. (2003). Association of Salmonella enterica SerovarEnteritidis YafD with Resistance to Chicken EggAlbumen. Infection and Immunity, 71(12), 6734–6741. https://doi.org/10.1128/IAI.71.12.6734-6741.2003
Luo, D., Liang, X., Xu, B., Liu, J., Wei, C., & Li, G. (2019). Rapid Discovery of Potential Drugs for Osteonecrosis of Femoral Head Based on Gene Expression Omnibus Database and Connectivity Map. Orthopaedic Surgery, 11(6), 1209–1219. https://doi.org/10.1111/os.12533
Matsumoto, Y., Ohta, K., Yumine, N., Goto, H., & Nishio, M. (2015). Identification of two essential aspartates for polymerase activity in parainfluenza virus L protein by a minireplicon system expressing secretory luciferase. Microbiology and Immunology, 59(11), 676–683. https://doi.org/10.1111/1348-0421.12329
McWhorter, A. R., & Chousalkar, K. K. (2019). From hatch to egg grading: Monitoring of Salmonella shedding in free-range egg production systems. Veterinary Research, 50(1), 58. https://doi.org/10.1186/s13567-019-0677-4
Miletic, S., Simpson, D. J., Szymanski, C. M., Deyholos, M. K., & Menassa, R. (2016). A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01221
Qi, D., & Chen, K. (2021). Bioinformatics Analysis of Potential Biomarkers and Pathway Identification for Major Depressive Disorder. Computational and Mathematical Methods in Medicine, 2021, 1–11. https://doi.org/10.1155/2021/3036741
Sakoh, M., Ito, K., & Akiyama, Y. (2005). Proteolytic Activity of HtpX, a Membrane-bound and Stress-controlled Protease from Escherichia coli. Journal of Biological Chemistry, 280(39), 33305–33310. https://doi.org/10.1074/jbc.M506180200
Sari, C., Ajeng Erika Prihastuti Haskito, Dinda Rahma Kurniasari, & Fajar Shodiq Permata. (2023). Big data analysis descriptively of Brucella abortus cases in Indonesia during 2006-2020. International Journal of Science and Research Archive, 10(2), 1048–1061. https://doi.org/10.30574/ijsra.2023.10.2.1077
Schwarz, M. A., Lee, D. D., & Bartlett, S. (2018). Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex. The International Journal of Biochemistry & Cell Biology, 99, 197–202. https://doi.org/10.1016/j.biocel.2018.04.015
Shah, D. H., Casavant, C., Hawley, Q., Addwebi, T., Call, D. R., & Guard, J. (2012). Salmonella Enteritidis Strains from Poultry Exhibit Differential Responses to Acid Stress, Oxidative Stress, and Survival in the Egg Albumen. Foodborne Pathogens and Disease, 9(3), 258–264. https://doi.org/10.1089/fpd.2011.1009
Shi, Y., Chen, D., Ma, S., Xu, H., & Deng, L. (2021). Identification of Potential Biomarkers of Depression and Network Pharmacology Approach to Investigate the Mechanism of Key Genes and Therapeutic Traditional Chinese Medicine in the Treatment of Depression. Evidence-Based Complementary and Alternative Medicine, 2021, 1–14. https://doi.org/10.1155/2021/2165632
Shippy, D., & Fadl, A. (2014). tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens. International Journal of Molecular Sciences, 15(10), 18267–18280. https://doi.org/10.3390/ijms151018267
Singh, A., Poshtiban, S., & Evoy, S. (2013). Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection. Sensors, 13(2), 1763–1786. https://doi.org/10.3390/s130201763
Six, S., Andrews, S. C., Unden, G., & Guest, J. R. (1994). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). Journal of Bacteriology, 176(21), 6470–6478. https://doi.org/10.1128/jb.176.21.6470-6478.1994
Song, S., Li, B., Jia, Z., & Guo, L. (2020). Sirtuin 3 mRNA Expression is Downregulated in the Brain Tissues of Alzheimer’s Disease Patients: A Bioinformatic and Data Mining Approach. Medical Science Monitor, 26. https://doi.org/10.12659/MSM.923547
Thomas, M., & Holden, D. W. (2009). Ubiquitination—A Bacterial Effector’s Ticket to Ride. Cell Host & Microbe, 5(4), 309–311. https://doi.org/10.1016/j.chom.2009.03.010
Torkashvand, N., Kamyab, H., Shahverdi, A. R., Khoshayand, M. R., & Sepehrizadeh, Z. (2022). Isolation, characterization, and genome investigation of vB_SenS_TUMS_E4, a polyvalent bacteriophage against Salmonella enteritidis [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1679990/v1
Tsen, H.-Y., Shih, C.-M., Teng, P.-H., Chen, H.-Y., Lin, C.-W., Chiou, C.-S., Wang, H.-T. T., Chang, H.-F. G., Chung, T.-Y., Lee, P.-Y., & Chiang, Y.-C. (2013). Detection of Salmonella in Chicken Meat by Insulated Isothermal PCR. Journal of Food Protection, 76(8), 1322–1329. https://doi.org/10.4315/0362-028X.JFP-12-553
Verbrugghe, E., Van Parys, A., Leyman, B., Boyen, F., Haesebrouck, F., & Pasmans, F. (2015). HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs. Veterinary Research, 46(1), 118. https://doi.org/10.1186/s13567-015-0261-5
Vickerman, M. M., Mather, N. M., Minick, P. E., & Edwards, C. A. (2002). Initial characterization of the Streptococcus gordonii htpX gene. Oral Microbiology and Immunology, 17(1), 22–31. https://doi.org/10.1046/j.0902-0055.2001.00000.x
Wei, R., Wang, Z., Zhang, Y., Wang, B., Shen, N., E, L., Li, X., Shang, L., Shang, Y., Yan, W., Zhang, X., Ma, W., & Wang, C. (2020). Bioinformatic Analysis Revealing Mitotic Spindle Assembly regulated NDC80 and MAD2L1 as Prognostic Biomarkers in Non-Small Cell Lung Cancer Development [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-43770/v3
Zhang, X., Wang, Z., Zeng, Z., Shen, N., Wang, B., Zhang, Y., Shen, H., Lu, W., Wei, R., Ma, W., & Wang, C. (2020). Bioinformatic Analysis Identifing FGF1 Gene as a New Prognostic Indicator in Clear Cell Renal Cell Carcinoma  [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-127479/v1
Zientz, E., Six, S., & Unden, G. (1996). Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: Roles of the three Dcu carriers in uptake and exchange. Journal of Bacteriology, 178(24), 7241–7247. https://doi.org/10.1128/jb.178.24.7241-7247.1996
Published
2024-01-17
How to Cite
Sari, C., Permata, F., & Tedjo, A. (2024). GENE EXPRESSION PROFILE IN SALMONELLA ENTERITIDIS IN EGG ALBUMEN BASED ON PATHOGENICITY VIA GEO-ANALYSIS. GPH-International Journal of Biological & Medicine Science, 7(01), 01-16. https://doi.org/10.5281/zenodo.10538961