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ABSTRACT 

Over the years, many models for estimating unsteady-state water influx in edge–water drive 

reservoir-aquifer systems as well as bottom-water drive reservoir–aquifer systems have been 

developed. Unfortunately, little emphasis has been placed on reservoir–aquifer systems of linear 

geometry.  

Therefore, this paper examines the applicability of the linear flow diffusivity equation in 

developing a model suitable for estimating unsteady-state water influx in linear water drive 

reservoir–aquifer (infinite) systems.  

The linear flow diffusivity equation is written in dimensionless form by defining an appropriate 

dimensionless time and dimensionless length in order to enhance a more generalized application.  

Moreover, the required constant-terminal pressure solution of the dimensionless equation is 

obtained by imposing the appropriate Drichlet’s and Newmann’s boundary conditions. 

Finally, the applicability of the solution is demonstrated using superposition principle. 

1.0 Introduction 

When an oil reservoir and the adjoining aquifer are contained between two parallel and sealing 

faulting planes, the flow of fluid is essentially parallel to these planes and is “Linear”. 

Furthermore, such reservoir is said to be producing under linear water drive.  

Over the years, the likes of Van Everdingen and Hurst, Cater–Tracy and Fetkovich have 

developed models for estimating unsteady– state water influx in edge–water drive reservoir-

aquifer systems. Coats on the other hand presented a model for bottom water drive reservoir-

aquifer systems. Unfortunately, little emphasis has been placed on reservoir aquifer systems of 

linear geometry. This paper presents a water influx model suitable for estimating unsteady– state 

water influx in reservoir-aquifer (infinite) systems of linear geometry. 

Finally, since water influx in an essential term of the material balance equation (MBE) for water 

drive reservoirs, therefore reservoir engineers would find the result of this study extremely useful 

in estimating water influx required for aquifer fitting.  
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2.0 The Governing Equation  

The mathematical modeling of Fluids flow in porous media requires the combination of at least 3 

equations, these are; 

a. The Transport Equation  

b. The Continuity Equation  

c. The Equation of State  

a. The Transport Equation: This is basically the Darcy’s  equation (for flow of slightly 

compressible fluids) or the  Forcheimer’s Equation (for flow of compressible fluids).  Since 

the focus of this study is on linear flow, therefore we would be considering the forms of these 

equations applicable to linear flow Geometry.  

 The Darcy’s equation for linear flow geometry is given by: 

  V =  - k   dp - - - - - - - - - - -- - (1)  

        dx 

 On the other hand, the linear form of the Forcheimer’s equation  is given by  

- dp    =  v  + Ft ρ
 v2  - - - - - - - -- - - - - (2) 

dx  k 

b. The Continuity Equation: This is essentially a conservation of mass equation. It is a 

mathematical expression of the relationship between the mass influx, mass out-flux and mass 

accumulation in porous media. 

 

   v(x) 

 

 

 

 Fig. (1)   

Applying the conservation of mass principle to the above core sample of Area A and length ∆x, 

we have: 

 Mass influx - mass out-flux = mass accumulation  

Mass influx into the sample = A(x) ρ(x) v(x) ∆t ----- (i)  

Mass flux out of the sample = A(x + ∆x) ρ(x+∆x) v(x+∆x) ∆t -----(ii) 

Mass accumulation = m(t+∆t) – m(t) --------- (iii) 

x x + ∆x 

 v (x + ∆x) 

A 
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Therefore, we have  

   (A(x) ρ(x)v(x) – A(x+∆x) ρ(x+∆x) v(x+∆x)) ∆t = m(t+∆t) – m(t) 

For linear flow geometry, the Area A exposed to flow  

is constant. Therefore, we have  

- A   ρv(x+∆x) – ρv(x)    =  m(t+∆t) – m(t)  ------- (iv) 

      ∆t 

 

as ∆t  0, we have  

 

- A   ρv(x+∆x) – ρv(x)    =  dm 

           dt 

 

But m = ρV = ρVp = ρA ∆x ------------(v) 

Substituting (v) into (iv) we have  

- A   ρv(x+∆x) – ρv(x)   =  d(ρ)A∆x 

     dt 

Dividing both sides by A∆x and letting ∆x    0, Then we have  

  -d(ρv) =  d(ρ)-----------(3) 

   dx       dt 

Equation (3) is the continuity equation  for one–dimensional linear flow in porous media.  

 

c. The Equation of State: This is basically the compressibility equation. The 

conpressibility equation can be written in terms of volume, density or formation volume factor of 

the fluid.  

The compressibility equation is expressed mathematically as: 

      c =  - 1   ∂V (in terms of vloume) ---------(vi) 

         V   ∂p 

     c =    - 1   ∂ρ (in terms of density)   ------- (vii) 

   ρ   ∂p 

      c = - 1 ∂Bi (in terms of formation volume factor ) –(viii) 

     Bi ∂p 

Another compressibility equation of interest is that of the formation which can be expressed in 

terms of volume or porosity. The formation compressibility is expressed mathematically as: 
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      cf      = -1   ∂Vf ---------- (ix) 

    Vf   ∂p 

 

      cf     = 1    ∂  -------- (x)  

       ∂p 

The partial differntial equation (PDE) that governs linear flow of slightltly compressibile 

fluid(oil and water) in porous media can be derived by combining equation  (1), (3), (vii) and (x) 

as follows: 

 

 V = - k    dp  -----------------(1) 

      dx 

- ∂(ρv) =  ∂(ρ)  --------------(3) 

∂x    ∂t  

By putting equation (1) into (3) and applying chain rule to the right hand side of equation (3) we 

have  

 

∂      k ρ  dp       =  c  ∂p 

∂x         dx          ∂t 

 

Expanding the left hand side of the above equation, we have  

 

∂2p    =  c  ∂p        ----------------------(4) 

∂x2         k     ∂t  

Equation (4) is the diffusivty equation for linear flow of fluids in porous media and the rest of 

this study focuses on how equation (4) can be used to develop a water influx model suitable for 

estimating water influx in reservoir-aquifer system of linear geometry. 

 

2.1 Non-dimensionalization  

The presentation of equations in dimensionless form is of great importance in the fields of 

science and engineering as it enhances a more generalized application of results and solutions.  
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In this study, the linear flow diffusivity equation is written in dimensionless form by defining 

appropriate dimesnionless time and length as follows: 

 tD = t  ,          xD    = x  

     T      L  

Where: 

tD  = Dimensionless time  

xD = Dimensionless length  

L  = Characteristic length   

T = Characteristic time 

To write equatin (4), in term of tD and xD we have: 

 ∂2p      =    c  ∂p  ------------------(4) 

  ∂x2            k    ∂t 

 

Since:  ∂        = ∂    .   ∂xD   =    1      ∂ 

   ∂x       ∂xD   ∂x  L     ∂xD 

 

:. 1     ∂        ∂p = c   ∂p 

 L2    ∂xD        ∂xD    k ∂t 

  

Also,    ∂ =  ∂   .   ∂t D    = 1    ∂ 

    ∂t  ∂tD      ∂t  T    ∂t D 

 

Therefore, we have: 

 1      ∂2p        = c    ∂p 

 L2       ∂x2
 D          kT  ∂t D 

 

:. ∂2p       =    cL2   ∂p   

  ∂x2
 D            kT      ∂t D 

 

Since  T  =   t  

    t D  we have  
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 ∂2p        =    cL2t D    ∂p   

  ∂x2
 D             kt        ∂t D  ----------------(5) 

Where t D  =   kt 

      cL2 

Equation (5) is the dimensionless linear flow diffusivity equation. 

2.2 Solution of the Dimensionless Equation: 

The solution of the dimensionless diffusivity equation appropriate for estimating water influx in 

reservior-aqufier systems is the constant-terminal pressure solution(CTPS). The CTPS requires 

keeping the presure at the inner boundary constant while observing the rate of water influx from 

the aquifer into the reservoir. 

The solution of equation(4) requires specifying the initial and boundary conditions.  

2.2.1  Initial Condition (IC) 

The IC would be presented both in terms of pressure and pressure drop respectively. This is due 

to the fact that the IC in terms of pressure drop would be required for obtaining the generalized 

solution for Linear flow in the later part of this study. At time zero the pressure at all points in 

the formation is constant and equal to unity and also the pressue drop is equal to zero. Therefore, 

we have  

P(x D ,0) = 1 

∆P (x D ,0)  = 0 

 

2.2.2  Inner Boundary Condition (IBC) 

For the same reason as in (2.2.1) above, the inner boundary condtion would also be presented in 

terms of rate of influx (Newmann’s condition) and pressure drop (Drichlet’s condition). When 

the reservoir is opened, the pressure at the reservoir-aquifer boundary, x D= 0, immediately drops 

to zero and remains zero for the duration of the production  history.  

Moreover, the rate of water influx at the reservoir–aquifer boundary is governed by Darcy’s law. 

Therefore we have: 

∆p(0, t D) = 1 

q  = kwh    ∂p 

 L ∂x D   x D  =  0 
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2.2.3 Outer Boundary Condition (OBC) 

The outer boundary condition  depends on the size of the aquifer i.e. whether finite (Bounded) or 

infinite. 

Finite aquifers: 

For finite aquifers, the pressure at the outer boundary changes and also it is assumed that there is 

no flow across the boundary. 

  ∂p  =  0 

  ∂x D   x D= β  

β < 100 (the aquifer is less than 100 times the size of the reservior). 

Infinite aquifers: 

For infinite aquifers, the pressure at the outer boundary is constant and equal to unity( i.e initial 

pressure) and also there is no pressure drop at the outer boundary. 

 P (x D, t D) =1 

 x D  

 p (x D, t D) = 0 

 x D   

 

 

2.2.4 Cumulative Water Influx 

From the above IBC, we have  

 q = kwh   ∂p  

      L     ∂x D  x D  = 0 

The above equation can be written as  

 ∂Q = kwh    ∂p 

 ∂t    L   ∂x D   x D = 0 

   

Writing the LHS of the above equation  in dimensionless form we have: 

 1  ∂Q = kwh   ∂p 

 T   ∂t D  L ∂x D   x D = 0 
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  ∂Q = kwhT    ∂p 

  ∂t D    L    ∂x D   x D = 0 

 

Since  T = cL2 

        K  

  ∂Q   = kwh  . cL2    ∂p 

  ∂t D     L         k  ∂x D   x D = 0  

 

 ∂Q  =   cLwh     ∂p 

 ∂t D             ∂x D  x D  = 0  

  

 

 

Integrating, we have; 

                 t D 

Q=  clwh   ∂p  ∂t D  -----(6) 

    ∂x D  x D = 0 

               0 

Equation (6) can be written as  

Q = clwh Qt D 

:. Q = UQt D   -----------(7)    

where         t D       

 Qt D =    ∂p    ∂t D   

      ∂x D   x D = 0 

                  0    

And U=clwh 

For any pressure drop p, equation (7) gives  

Q = UP Qt D  ------------ (8) 

Equation (8) is the generalized expression for cumlative water influx in a reservoir–aquifer 

systems of linear geometry.  

To estimate cumulative water influx using equation (8), an expression for the generalized 

solution for linear flow is required.  

 

GPH-Journal of Advance Research in Applied Science

Volume-1 | Issue-1 |August,2018 57 



Therefore, the next phase of this study focuses on the method of obtaining the generalized 

solution for linear flow in order to be able to estimate cumulative water influx using equation (8). 

 

2.2.5  The Genaralized Solution  for Linear Flow  

In order to apply equation (8), the generalized solution for linear flow (Qt D) is required. This 

generalized solution can be obtained by solving the dimensionless  linear flow diffusivity 

equation .  

 

The dimensionless linear flow diffusivity equation (equation 5) as derived above is given by  

 ∂2p      =  ∂p  ----------------(5) 

  ∂x2
D         ∂t D  

Where x D =  K   and   t D =   kt 

     L   cL2 

Interpreting pressure in equation (5) as pressure drop and presenting the IC and BC in terms of 

pressure drop then we have the following problem; 

Governing Equation:    ∂2p   =   ∂p  ------------------(5) 

       ∂x2
 D       ∂t D 

IC :  p(x D, 0) = 0  

BC:  Since the emphasis of this study is on infinite reservoir- aquifer systems, therefore we have  

Inner BC:  p(0, t D)  = 1  

Outer BC:  p(x D, t D) = 0 

   x D   

 

The above problem would be solved by invoking the method of Laplace transform as follows : 

Applying Lapace Transform to equation (5) and imposing the IC, we have: 

 ∂2p(x D,s )    =sp(x D,s) --------------------(9) 

    ∂x2
 D 

Equation (9) is a second-order linear ordinary differential equation which can be solved 

analytically. 

Assume a solution: 

 

∂2p  = m2emx
D,  therefore we have: 

P= emx
 D 
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∂x2
 D

 

m2emx
 D - semx

 D = 0  

emx
 D  0 

Therefore  m2 – s = 0 

  m=  √s 

P  = A e(√s)x
D + B e-(√s) x

D 

Transforming the BC, we have  

P (0,s)  =   1      (Inner BC) 

         s  

P (x D,s)  =  0    (outer BC) 

X D    

Imposing the transformed outer BC, we have  

p(x D, s) = A e(√s)x
 D  + Be-(√s)x

 D 

P (x D, s) = Ae√s  + Be-√s  = 0 

x D   

 Ae√s = 0 

:.     A = 0  

P (x D, s) = Be-(√s)x
 D 

Imposing the transformed inner BC, we have  

P (0,s) = Be0 = 1 

        s 

 

:. B = 1 

  s 

 

:. P (x D, s) = e-(√s)x
 D       -----------------------(10) 

      s   

Equation (10) is the transformed form of the solution to equation (8) for an infinite reservoir-

aquifer system.  

From equation (10) we have  

∂p(x D  ,s)  = -√se-(√s)x
 D    = -e-(√s)x

 D  
 

  ∂x D     s             √s 

 

∂p(x D  ,s)  =  –1  
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   ∂x D        x D  = 0         √s 

 

- ∂p (x D  ,s)  = ∂p(x D  ,s) 

  ∂x D     x D = 0         ∂x D        x D  = 0  

 

 

∂p(x D  ,s)  =   1  

   ∂x D        x D  = 0         √s 

 

  By the theorem of Laplace transform, we have 

     t D    

 ∂p(x D  ,s) ∂t D    =   1  

    ∂x D   x D   = 0   s3/2 

 

 

 

 

    t D                                 t D   

 ∂p(x D  ,s) ∂t D    = L   ∂p(x D  ,t D  )  ∂t D   

    ∂x D   x D   = 0      ∂x D   

  t D                                                                                          t D   

 ∂p(x D  ,t D) ∂t D    =  L-1     ∂p(x D  ,s)  ∂t D   

    ∂x D        x D  = 0          ∂x D   x D   = 0 

 

            t D    

Qt D   =       ∂p(x D ,t D ) ∂t D   =      L-1   1 

   ∂x D         x D   = 0       s3/2  

 

Qt D = 2 t D
 ½

 
     -----------------------(11) 

             √   

 

0 

0 

  

0 

 

0 

 

0 

 

0 
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Equation (11) is the generalized solution for linear flow. Putting equation (11) into equation (8) 

we have  

Q = U∆P Qt D = 2  U∆P tD
½ ………… (12) 

             √ 

Equation (12) can be used to estimate water influx at any time tn. 

 

3.0 Results and Discussion: 

In practice the estimation of cumulative water influx involves the discretization of the continuous 

pressure decline curve into discrete pressure decline steps. Afterwards the cumulative water 

influx due to all the pressure decline steps is then estimated using superposition principle. 

In the same vein, the expression for cumulative water influx obtained in this study must therefore 

be applied in practice using superposition principle.  

Therefore, the cumulative water influx at the end of time, tn is given by: 

Q = U (∆P1Qt Dn + ∆P2QtDn-1 + ∆P3 QtDn-2 +...+ ∆PnQtD1) 

Q = U ∑∆Pi QtDj ---------(13) 

Equation (13) can be used for practical estimation of water influx due to an infinite aquifer of 

linear geometry.  

Where ∆Pi = pressure drop at the end of time ti, i = 1,2, -----n 

∆Pi = ½ (Pi-2 – Pi), i > 2      -----(14) 

QtDj = Dimensionless water influx for time t =tj, j= 1, 2, ----n 

QtDj = 2 tDj
 ½

  

  √  --------(15) 

 

tDj = ktj  

      cL2  -------(16) 

 = 0.000264 (tj-hrs) 

   = 0.00634 (tj – days) 

   = 2.309 (tj – years) 

U = 0.1781wLhc (bbl/psi)  ------(17) 

 

 

i =n, j =1 

i =1, j = n 
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Nomenclature 

h = Reservoir thickness 

K = Permeability of the medium of interest  

P = Pressure  

p = Pressure drop  

Q = cumulativ water influx 

QtD = Generalized solution for linear flow. 

U = Water influx constant  

v = Velocity of flow 

Vp = Pore volume 

V = Bulk volume 

Vf = Formation volume 

W = Reservoir width 

 = Fluid’s viscosity  

ρ = Fluid density  

Ft = For chimer’s coefficient  

 = Porosity  
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