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Abstract  

In this paper a four parameter Exponentiated Generalized Exponentiated exponential distribution 

Is derived from family of GEE and studied. Various properties of the distribution are studied. 

The distribution is found to be unimodal and has a decreasing and increasing hazard rate 

depending on the shape parameters. The expressions for the moment, median, quartile, mean 

deviation, median deviation, skeweness, kurtosis, Renyi entropy are obtained. Several known 

continuous distributions are found to be special cases of the new distributions. Simulation study 

and maximum likelihood estimate are used to estimate unknown parameters.  
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1 INTRODUCTION 

The exponential distribution (ED) also known as negative exponential distribution is a 

probability distribution that describes the time between event in a Poisson point process i.e a 

process in which event occurs continuously and independently at a constant average rate. The 

ED is a very popular statistical model probably, is one of the parametric model most extensively 

used in several fields; Lemonte et al [1]. The popularity of this distribution can be explained 

perhaps, by the simplicity of their cumulative function, which involves only one unknown 

parameter 𝜆 > 0 and takes a simple form  𝐺(𝑥) = 1 − 𝑒−𝜆𝑥 for 𝑥 > 0 in addition to having 

constant hazard rate.  

Gompertz [2] and Verhulst [3,4 and 5] developed several cumulative distribution  functions 

during the first half of the nineteenth century to compare known human mortality tables and 

represent mortality growth. One of them is as follows 

𝐺(𝑡) = (1 − 𝜌𝑒−𝜆𝑡)α ………… . .1 

for 𝑡 > 1
𝜆⁄ 𝐼𝑛𝜌. Where 𝜌, 𝜆 𝑎𝑛𝑑 𝛼 are all positive real numbers. In twentieth century, Ahuja and 

Nash [6] also considered this model and made some further generalization. The generalized 

exponential distribution or the exponentiated exponential distribution is defined as a particular 

case of the Gompertz-Verhulst [2,3,4 and5]  distribution function, when ρ = 1. Therefore, X is a 

two parameters generalized exponential random variable if it has the distribution function 

𝐺(𝑥: 𝛼, 𝜆) = (1 − 𝑒−𝜆𝑥)α ………………2 
and the density function.  

𝑔(𝑥: 𝛼, 𝜆) = 𝛼𝜆(1 − 𝑒−𝜆𝑥)α−1𝑒−𝑥𝑡 …… . .3 
Where α and λ play the role of the shape and scale parameters respectively. Many exponentiated 

families of distributions have appeared in the literature as generalizations of existing 

distributions. Mudholkar and Srivastava [7] extended the Weibull distribution by introducing the 

3-parameter exponentiated Weibull distribution (EWD) that has bathtub or monotone failure rate. 

Gupta et al.[8] studied the general properties of the exponentiated families of distributions such 

as hazard function and some ordering relations. Gupta and Kundu [9] defined a 2-parameter 
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generalized exponential distribution, a particular case of EWD, and studied some of its 

properties, including hazard rate, moment generating function, distribution of sums and extreme 

values. They also compared the flexibility of the generalized exponential distribution to a 2-

parameter gamma distribution and a 2 parameter Weibull distribution by studying the deep 

groove ball bearings lifetime data. They concluded that the generalized exponential distribution 

can be used as alternative to the 2 parameter Weibull distribution and the 2-parameter gamma 

distribution. 

Cadeiro et al [10] proposed a class of distributions by adding two parameters to a continuous 

distribution, by extending the idea first introduced by Lehman [11] and studied by Nadarah and 

Kotz [12]. This method leads to a new class of Exponentiated generalized distribution (EG) that 

can be interpreted as a double construction of Lehmann alternative.  The distributions extend the 

exponentiated type distribution and obtain some of its structure properties. Given a continuous 

c.d.f. G(x), we define the EG class of distributions by  

𝐹(𝑥) = [1 − {1 − 𝐺(𝑥)}𝛼]𝛽 …………………………………4 

and 

𝑓(𝑥) = 𝛼𝛽{1 − 𝐺(𝑥)}𝛼−1[1 − {1 − 𝐺(𝑥)}𝛼]𝛽−1𝑔(𝑥)…………5 

Where 𝛼 > 0 𝑎𝑛𝑑 𝛽 > 0 are two additional shape parameters. The EG has tractable properties 

especially for simulation since its quantile function take a simple form. 

𝑥 = 𝑄𝐺([1 − (1 − 𝑢1/𝛽)1/𝛼])… . .6 

Where 𝑄𝐺(𝑢) is the baseline quantile function. 

To illustrate the flexibility of EG model, Cordero et al [10] applied EG to some well known 

distribution such as the Frechet, normal, gamma and Gumbel distributions, with several 

properties for the EG class, which provide motivations to adopt this generator. The two extra 

parameters 𝛼 𝑎𝑛𝑑 𝛽 in the density can control both tail weight, and allow generation of flexible 

distribution, with heavier or lighter tails, as appropriate. There is also an attractive physical 

interpretation of the EG model when 𝛼 𝑎𝑛𝑑 𝛽 are positive integers see Cordeiro and lemonte 

[13]. The EG family properties have been explored in recent works. Here, we refer to the papers: 

Cordeiro et al.[14], Cordeiro and Lemonte [13], Elbatal and Muhammed [15], Oguntunde et 

al.[16] , da Silva et al.[17] , de Andrade et al [18,19] Cordeiro et al [20] , which used the EG 

class to extend the Burr III, Birnbaum-Saundersm, inverse Weibull, inverted exponential, 

generalized gamma , Gumbel ,extended exponential, standardized half-logistic distributions 

respectively. 

Numerous generalized classes of distributions have been developed and applied to explain 

diverse phenomena. A common feature of these generalized distributions is that they have more 

parameters. The interests in developing more flexible statistical distribution have remained 

strong in statistics profession; Alzaatreh et al [21] .  Johnson et al.[22] stated that the use of four-

parameter distributions should be sufficient for most practical purposes. According to these 

authors, at least three parameters are needed but they doubted any noticeable improvement 

arising from including a fifth or sixth parameter. We belief that additional two parameters to an 

existing exponentiated exponential distribution which serve as alternative distribution to weibull 
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and gamma distribution may generate new distribution with tractable properties. This paper 

presents yet another four parameters statistical distribution to fit positively skewed distribution. 

The rest of the paper is organized as follows. In Section 2 we define the Exponentiated 

Generalized Exponentiated exponential (EGEE) distribution and outline some special cases of 

the distribution and how other two existing distributions were formulated in section 3. The 

graphs of probability density fuction (pdf), cumulative distribution function (cdf) and hazard 

functions of proposed distribution and other two existing distributions of the family are obtained. 

In section 4, some mathematical properties and limit behavior are derived, in section 5, the 

maximum likelihood is used to estimate the unknown parameters, in section 6, we provide some 

simulated result base on the mathematical properties. We conclude in section 7 base on some 

significant result on the EGEE distribution. 

2.0 Methodology. 

 Firstly a statistical distribution will be proposed in this study, the distribution would be 

generated by using exponentiated generalized family frame work with the generalized 

exponential distribution as the baseline distribution. Secondly, properties of the distribution will 

be study and the simulation study will be done using R statistics.   Thirdly Maximum likelihood 

estimator will be use to estimate the unknown parameters. 

2.1 EXISTING DISTRIBUTIONS FROM EXPONENTIATED GENERALIZED FAMILY 

We intend to look at two existing distributions from an Exponentiated Generalized Family of 

distribution.  Cordeiro et al [10] and Oguntunde et al [16] used Exponentiated Generalized 

Family to add two parameters to Frechet and Inverted Exponential distribution respectively.  

2.1.1Exponentiated  Generalized Frechet (EGF) 

The cdf of the Frechet distribution (for 𝑥 > 0) is 𝐺𝜎,𝜆(𝑥) = exp {−(𝜎/𝑥)𝜆}, where 𝜆 > 0 and 

𝜎 > 0. Then, we defined the Exponentiated Generalized Frechet (EGF) cumulative distibution 

(for 𝑥 > 0) from  (4) as, 

 

𝐹(𝑥) = [1 − {1 − exp {−(𝜎/𝑥)𝜆}}𝛼]𝛽 ……………………………………………… . .   7 

where 𝜆 > 0 , 𝜎 > 0 , 𝛼 > 0 and 𝛽 > 0. The EGF density function can be obtain from (5) as 

𝑓(𝑥) = 𝛼𝛽𝜆𝜎𝜆𝑥−(𝜆+1)exp {−(𝜎/𝑥)𝜆}[1 − exp {−(𝜎/𝑥)𝜆}]𝛼−1(1 − [1 −

exp {− (
𝜎

𝑥)𝜆
}]𝛼)𝛽−1 …...8 

The hazard function of EGF 

ℎ(𝑥) =
𝛼𝛽𝜆𝜎𝜆𝑥−(𝜆+1)exp {−(𝜎/𝑥)𝜆}[1−exp {−(𝜎/𝑥)𝜆}]𝛼−1(1−[1−exp {−(𝜎/𝑥)𝜆}]𝛼)𝛽−1

1−[1−{1−exp {−(𝜎/𝑥)𝜆}}𝛼]𝛽
……………………….9 

 

 

2.1.2   EXPONENTIATED  GENERALIZED INVERTED EXPONENTIAL (EGIE) 
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The pdf and cdf of the Inverted Exponential (IE) distribution are given respectively by; 𝑔(𝑥) =
𝜆

𝑥2 exp (−
𝜆

𝑥
)  𝑎𝑛𝑑 𝐺(𝑥) = exp (−

𝜆

𝑥
) where 𝑥 > 0, the scale parameter 𝜆 > 0. Hence the EGIE 

distribution is derived by substituting cdf of IE into equation (4) to obtain 

𝐹(𝑥) = [1 − {1 − exp −(𝜆/𝑥)}𝛼]𝛽 ………………………………………………… .10 

The corresponding pdf 

𝑓(𝑥) = 𝛼𝛽𝜆𝑥2exp −(𝜆/𝑥){1 − exp −(𝜆/𝑥)}𝛼−1[1 − {1 − exp− (
𝜆

𝑥
)}𝛼]𝛽−1 … .11 

Where 𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜆 > 0 

Hazard function of EGIE becomes; 

ℎ(𝑥) =
𝛼𝛽𝜆𝑥2exp −(𝜆/𝑥){1−exp −(𝜆/𝑥)}𝛼−1[1−{1−exp−(

𝜆

𝑥
)}𝛼]𝛽−1

1−[1−{1−exp −(𝜆/𝑥)}𝛼]𝛽
……………………………..12 

2.1.3   PROPOSED DISTRIBUTION 

Exponentiated Generalized Exponentiated Exponential (EGEE)  

The cdf and pdf of the Exponentiated Exponential are presented in equation (13) and  

( 14) respectively as;  

𝐺(𝑥) = (1 − 𝑒−𝑥/𝜃)𝑘 ……………………………………………………………………… . . .13 

𝑔(𝑥, 𝜃, 𝑘) = 𝑘/𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1𝑒−
𝑥
𝜃 …………………………………………………… . . .14 

Then we defined the Exponentiated Generalized Exponentiated Exponential (EGEE) cumulative 

distribution from (4) as; 

𝐹(𝑥) = [1 − {1 − (1 − 𝑒−𝑥/𝜃)𝑘}𝛼]𝛽 …………………………………………………… . .15 

By inserting (12) in (4) and the corresponding p.d.f from (23) is 

𝑓(𝑥) =
𝛼𝛽𝑘

𝜃
𝑒−

𝑥
𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1{1 − (1 − 𝑒−𝑥/)𝑘}𝛼−1[1 − {1 − (1 − 𝑒−

𝑥
𝜃)𝑘}𝛼]𝛽−1 … .16 

The hazard function is; 

ℎ(𝑥) =

𝛼𝛽𝑘
𝜃 𝑒−𝑥/𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1{1 − (1 − 𝑒−𝑥/𝜃)𝑘}𝛼−1[1 − {1 − (1 − 𝑒−𝑥/𝜃)𝑘}𝛼]𝛽−1

1 − [1 − {1 − (1 − 𝑒−𝑥/𝜃)𝑘}𝛼]𝛽
… .17 

The survival function is; 

𝑠(𝑥) = 1 − [1 − {1 − (1 − 𝑒−
𝑥
𝜃)𝑘}𝛼]𝛽 ………………………………………………18 
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Quantile function of Exponentiated Generalized Exponentiated Exponential (EGEE) is expressed 

as 

𝑥 = −𝜃[𝑙𝑛(1 − (1 − {1 − 𝑢
1
𝛽}

1
𝛼)

1
𝑘)]………………………………………………19 

where 𝛼, 𝛽 𝑎𝑛𝑑 Κ are shape parameters while 𝜃 is a scale parameter.s 

2.1.4 SPECIAL CASE OF EGEE DISTRIBUTION.  

 The Exponential distribution is a special case of EGEE when 𝛼 = 𝛽 = 𝑘 = 1. 

 For 𝛼 = 𝛽 = 1 the EGEE gives an Exponentiated Exponential distribution  

 When 𝑘 = 1 the EGEE gives a member of Exponentiated Generalized Family which is 

Exponentiated Generalized Exponential distribution. 

3.1  PLOTS OF SOME EXPONENTIATED GENERALIZED FAMILY OF 

DISTRIBUTIONS 

The plots for EGF, EGEE and EGIE distributions for selected parameters value are displayed in 

figure 1,2,3,4,5,6…9. Figures 1, 2 and 3 are the density function plots for EGEE, EGF and EGIE 

respectively for various values of the their parameters, Figures 4, 5 and 6 are the cdf plots for 

EGEE, EGF and EGIE respectively while Figures 7, 8 and 9 are the hazard function plots for 

EGEE, EGF and EGIE respectively. These plots show that the EGF and EGEE model are fairly 

flexible and can be used to fit positive skewed data.  

 

 

 

 

 

 

 

 

  Figure 2 Plot of  Density function for  EGF 

 

Figure 1 Plot of  Density function for  EGEE 

 

Figure 1 Plot of  Density function for  EGEE 
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Figure 1 of EGEE shows values for 𝛼 = 𝑎, 𝛽 = 𝑒, 𝜃 = 𝜃 𝑎𝑛𝑑 Κ = k  parameters which are 

shapes and scale parameters respectively.  At 𝛼 = 9, 𝛽 = 4, 𝜃 = 2 𝑎𝑛𝑑 Κ = 4 the graph shows 

skeweness  on both sides, a shift in the graph to left and a peak at 2 in the x axis. At a reduce 

value of the parameters  𝛼 = 7, 𝛽 = 2, 𝜃 = 2 𝑎𝑛𝑑 Κ = 2.5, the density is right skewed, more 

close to zero and have a peak between 1 and 2 in the x axis. As the values shape parameter tends  

to 1, skewness at left side tend to disappear  and  becomes  heavier at the right side of the graph. 

The last graph on figure 1 shows a decrease (inverted J shape) as the shape parameter values are 

less than 1.  

Figure 2 from EGF with the same numbers of shapes and scale parameters show high peak for a 

high values of shape parameter. The peak tends to reduce as the shapes parameter reduces. They 

both exhibit similar skewness level but have different starting point on the plots. Figure 3 shows 

plot of EGIE distribution for shapes and scale parameters. The origin of graphs and the 

projection point came earlier than the other two graphs. The peaks for the graphs did not behave 

in accordance with the size of parameters.  

The graphs for EGEE shows the flexibility of our proposed distribution with the following 

attribute: uni-modal, decreasing (inverted J shape), increasing and can be skewed at both end 

depending on the values of the parameter.  There are strong influence of values shape parameter 

on EGEE distribution than EGF and EGIE. 

 

 

 

 

 

 

 

Figure 3 Plot for Density function for EGIE 

 

Figure 4 Plot of  Cumulative Distribution Function (cdf) for EGEE 
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Figure 4 of EGEE distribution shows true nature of cdf of no plot exceeding the bench mark of 1. 

For a high values of shape parameter (At 𝛼 = 9, 𝛽 = 4, 𝜃 = 2 𝑎𝑛𝑑 Κ = 4) the graph moved at a 

constant rate from point zero to a value close to two on the x-axis before projecting to one on the 

y-axis. As the shapes parameters decrease the projection point on the graph reduced to a value 

lesser than one on the x axis. At shapes parameter of  𝛼 = 3, 𝛽 = 0.5 𝑎𝑛𝑑 Κ = 1.5  the graph 

made no movement on the x axis. 

Figure 5 of EGF cdf shows a similar pattern like that of EGEE for shapes and scale parameters 

𝛼 = 9, 𝛽 = 4, 𝜃 = 2 𝑎𝑛𝑑 Κ = 4,  as the shapes parameters decrease EGF exhibit the same kind 

of pattern in  respective of the values of the parameters. 

Figure 6 of EGIE cdf with less shapes parameters shows different pattern of movement compare 

to EGEE and EGF. For high values of shapes and scale parameters 𝛼 = 9, 𝛽 = 4, 𝑎𝑛𝑑 𝜃 = 2, the 

movement on the x axis tend to move close to value one before projecting to one on the y axis, as 

shape parameter reduce the movement on the x axis reduces.   

From figures 4,5 and 6 we can conclude that the effect of shapes parameters has more significant 

influence on EGEE distribution than EGF and EGIE distributions. 

 

 

 

 

Figure 6 Plot of  Cumulative Distribution Function (cdf) for EGIE 

       Figure7 Plot of  Hazard function for EGEE 

 

Figure 5 Plot of  Cumulative Distribution Function (cdf) for EGF 
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Figure 7 shows EGEE distributions can have constant, increasing or decreases, depending on the 

shapes and scale parameters. For high values of shapes parameters𝛼 = 9, 𝛽 = 4 𝑎𝑛𝑑 Κ = 4 the 

hazard function tend to be constant at a point before increasing, as the shapes parameters 

decrease ,there was a sharp increase in the hazard function before a slow movement at a later 

stage, while for  values of shape parameter less than one ( 𝛼 = 3, 𝛽 = 0.5 𝑎𝑛𝑑 Κ = 1.5) the 

shape of hazard is decreasing and constant.  

Figure 8 of EGF shows hazard graph which can be decreasing, increasing and constant 

depending on the shapes parameter. While Figure 9 of EGIE distribution has a decreasing and 

increasing hazard plot.  

From figure 7, 8 and 9 the EGEE graph seems to be more sensitive to change in parameter 

values.    

4.1 PROPERTIES OF EXPONENTIATED GENERALIZED EXPONENTIATED 

EXPONENTIAL (EGEE) 

The cumulative and the probability distribution of Exponentiated Exponential are expressed 

respectively in equation 12 and 13 as. 

𝐺(𝑥) = (1 − 𝑒−
𝑥
𝜃)𝑘 

𝑔(𝑥, 𝜃, 𝑘) =
𝑘

𝜃
(1 − 𝑒−

𝑥
𝜃)𝑘−1𝑒−

𝑥
𝜃 

The properties of the proposed distribution will be derived from Exponentiated Generalized 

Family (EGF) distribution in equation 4 and 5. 

𝐹(𝑥) = [1 − {1 − 𝐺(𝑥)}𝛼]𝛽 

       Figure8 Plot of  Hazard function for EGF 

 

       Figure 9 Plot of  Hazard function for EGIE 
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𝜶 > 0, 𝛽 > 0, 𝑥𝜖ℝ 

𝑓(𝑥) = 𝛼𝛽{1 − 𝐺(𝑥)}𝛼−1[1 − {1 − 𝐺(𝑥)}𝛼]𝛽−1𝑔(𝑥) 

Expansion for the density function 

(𝟏 − 𝒛)𝜷−𝟏 = ∑
(−𝟏)𝝀𝚪(𝜷)

𝚪(𝜷 − 𝝀)𝝀!
𝒛𝝀         |𝒛|<1,𝛽𝜖ℝ

∞

𝝀=𝟎

…………………… . . 𝟐𝟎 

Thus using similar expansion on equation 15  

𝐹(𝑥) = ∑
(−𝟏)𝝀𝚪(𝜷 + 𝟏)

𝚪(𝜷 − 𝝀 + 𝟏)𝝀!
{1 − 𝐺(𝑥)}𝛼𝜆

∞

𝝀=𝟎

 

Consider 

{1 − 𝐺(𝑥)}𝛼𝜆 = ∑
(−𝟏)𝒋𝚪(𝛼𝜆 + 𝟏)

𝚪(𝛼𝜆 − 𝒋 + 𝟏) 𝒋!
𝐺(𝑥)

𝒋
∞

𝒋=𝟎

 

𝐹(𝑥) = ∑ ∑
(−𝟏)𝝀+𝒋𝚪(𝜷 + 𝟏)𝚪(𝛼𝜆 + 𝟏)

𝚪(𝜷 − 𝝀 + 𝟏)𝚪(𝛼𝜆 − 𝒋 + 𝟏) 𝒋! 𝝀!
𝐺(𝑥)

𝒋
∞

𝝀=𝟎

……… . 𝟐𝟏

∞

𝑗=0

 

𝐹(𝑥) = ∑𝒘𝒋

∞

𝑗=0

𝐺(𝑥)
𝒋
………………………………………………… . . 𝟐𝟐 

Where 𝑤𝑗 = 𝑤𝑗(𝛼, 𝛽) = ∑
(−𝟏)𝝀+𝒋𝚪(𝜷+𝟏)𝚪(𝛼𝜆+𝟏)

𝚪(𝜷−𝝀+𝟏)𝚪(𝛼𝜆−𝒋+𝟏) 𝒋!𝝀!

∞
𝝀=𝟎  

Differentiating  equation  21 with respect to x gives the pdf 

𝑓(𝑥) = ∑𝑗𝒘𝒋𝒈(𝒙)

∞

𝑗=0

(𝐺(𝑥) )
𝒋−𝟏

……………………  … ..    … 𝟐𝟑 

Putting equation 13 and 14 into equation 22 

𝑓(𝑥) = ∑𝑗𝒘𝒋

∞

𝑗=0

𝑘

𝜃
(1 − 𝑒−

𝑥
𝜃)𝑘−1𝑒−

𝑥
𝜃(1 − 𝑒−

𝑥
𝜃)𝑘(𝑗−1) 

𝑓(𝑥) =
𝑘

𝜃
∑𝑗𝒘𝒋

∞

𝑗=0

𝑒−
𝑥
𝜃(1 − 𝑒−

𝑥
𝜃)𝑘𝑗−1 ………………   … 24 
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4.1.1 THE 𝒓𝒕𝒉 MOMENT OF PROPOSED EGEE DISTRIBUTION 

𝝁𝒓 = ∫ 𝒙𝒓𝒇(𝒙) 𝒅𝒙

∞

𝟎

………………………….  …………… . . 𝟐𝟓 

Using the expansion of equation 11 

𝝁𝒓 = ∫ 𝒙𝒓
𝑘

𝜃
∑𝑗𝒘𝒋

∞

𝑗=0

𝑒−
𝑥
𝜃(1 − 𝑒−

𝑥
𝜃)𝑘𝑗−1 𝒅𝒙

∞

𝟎

 

𝝁𝒓 =
𝑘

𝜃
∑ ∑

(−𝟏)𝒎𝚪(𝑘𝑗)

𝚪(𝑘𝑗 − 𝒎) 𝒎!

∞

𝒎=𝟎

𝑗𝒘𝒋

∞

𝑗=0

∫ (
𝜃𝑦

𝑚 + 1
)
𝒓

𝑒
−𝑥(

𝑚+1
𝜃

) 𝜃𝑑𝑦

𝑚 + 1

∞

𝟎

 

𝝁𝒓 =
𝑘𝜃𝑟

(𝑚 + 1)𝑟+1
∑ ∑

(−𝟏)𝒎𝚪(𝑘𝑗)

𝚪(𝑘𝑗 − 𝒎) 𝒎!

∞

𝒎=𝟎

𝑗𝒘𝒋

∞

𝑗=0

 𝚪(𝐫 + 𝟏)……………𝟐𝟔 

The mean of the  proposed EGEE distribution is gotten by making 𝜇𝑟 moment equal to one (|r=1) 

𝝁/
𝟏 =

𝑘𝜃

(𝑚 + 1)2
∑ ∑

(−𝟏)𝒎𝚪(𝑘𝑗)

𝚪(𝑘𝑗 − 𝒎) 𝒎!

∞

𝒎=𝟎

𝑗𝒘𝒋

∞

𝑗=0

………………………… . . 𝟐𝟕 

𝝈𝟐 =
𝑘𝜃2

(𝑚 + 1)3
∑ ∑

(−𝟏)𝒎𝚪(𝑘𝑗)

𝚪(𝑘𝑗 − 𝒎) 𝒎!

∞

𝒎=𝟎

𝑗𝒘𝒋

∞

𝑗=0

(2 −
𝑘

(𝑚 + 1)
∑ ∑

(−𝟏)𝒎𝚪(𝑘𝑗)

𝚪(𝑘𝑗 − 𝒎) 𝒎!

∞

𝒎=𝟎

𝑗𝒘𝒋

∞

𝑗=0

)…… .30 

4.1.3  MEDIAN OF EGEE DISTRIBUTION 

𝐹(𝑥) = 𝑝𝑟(𝑋 ≤ 𝑚) = ∫ 𝑓(𝑥)𝑑𝑥 = 0.5
𝑚

0

……… .31 

The median of EGEE Distribution can be obtain by equating equation 14 to 0.5 

𝐹(𝑥) = [1 − {1 − (1 − 𝑒−
𝑥
𝜃)𝑘}𝛼]𝛽 

𝑥 = −𝜃[𝑙𝑛(1 − (1 − {1 − (0.5)
1
𝛽}

1
𝛼)

1
𝑘)]………………… .32 
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4.1.4   MOMENT GENERATING FUNCTION OF EGEE DISTRIBUTION 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) 

𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝒇(𝒙) 𝒅𝒙

∞

𝟎

………………………….  …………… . . 𝟑𝟑 

∫ 𝑒𝑡𝑥
𝑘

𝜃
∑𝑗𝒘𝒋

∞

𝑗=0

𝑒−
𝑥
𝜃(1 − 𝑒−

𝑥
𝜃)𝑘𝑗−1

∞

𝟎

𝒅𝒙 

𝑀𝑥(𝑡) =
𝑘

(𝑚 + 1 − 𝜃𝑡)
∑ ∑(−1)𝑚 (

𝑘𝑗 − 1

𝑚
)

∞

𝑚=0

𝑗𝒘𝒋

∞

𝑗=0

………… .34 

𝝁/
𝟏 = 𝑀/

𝑥(𝑡) 

𝑀/
𝑥(0) =

𝜃𝑘

(𝑚 + 1)2
∑ ∑(−1)𝑚 (

𝑘𝑗 − 1

𝑚
)

∞

𝑚=0

𝑗𝒘𝒋

∞

𝑗=0

 

4.1.5     ORDER STATISTICS OF EXPONENTIATED GENERALIZED FAMILY 

DISTRIBUTION 

The density 𝑓𝑛:𝑖(𝑥) of the 𝑖𝑡ℎ order statistics, for 𝑖 = 1,……𝑛, from independent identical 

distribution random variable 𝑌1 ……𝑌𝑛 is given by 

𝑓𝑛:𝑖(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1(1 − 𝐹(𝑥))

𝑛−𝑖
………………………35 

Substitute in equation 35  for pdf and cdf EGF distribution 

𝑓𝑛:𝑖(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1(1 − 𝐹(𝑥))𝑛−𝑖 

𝑓𝑛:𝑖(𝑥) =
∝ 𝛽𝑔(𝑥)(1 − 𝐺(𝑥))𝛼−1(1 − (1 − 𝐺(𝑥))𝛼)𝛽−1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
(1 − (1 − 𝐺(𝑥))𝛼)𝛽(𝑖−1)

× (1 − (1 − (1 − 𝐺(𝑥))𝛼)𝛽)
𝑛−𝑖

 

𝑓𝑛:𝑖(𝑥) =
∝ 𝛽𝑔(𝑥)(1 − 𝐺(𝑥))𝛼−1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
(1 − (1 − 𝐺(𝑥))𝛼)𝛽𝑖−1 × (1 − (1 − (1 − 𝐺(𝑥))𝛼)𝛽)

𝑛−𝑖
 

𝑓𝑛:𝑖(𝑥) =
∝ 𝛽𝑔(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑ ∑(−1)𝑞+𝑝+𝑙 (

𝑛 − 𝑖

𝑞
) (

𝛽(𝑞 + 𝑖) − 1

𝑝
)

∞

𝑙=0

∞

𝑝=0

𝑛−𝑖

𝑞=0

(
𝛼(𝑝 + 1) − 1

𝑙
) 𝐺(𝑥)𝑙 

Let   𝑠𝑙 = ∑ ∑ (−1)𝑞+𝑝+𝑙 (𝑛−𝑖
𝑞

) (𝛽(𝑞+𝑖)−1
𝑝

)∞
𝑝

𝑛−𝑖
𝑞 (𝛼(𝑝+1)−1

𝑙
) 
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∝ 𝛽

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑𝑠𝑙𝑔(𝑥)𝐺(𝑥)𝑙

∞

𝑙=𝑜

………… .36𝐴 

Order statistics of EGEE distribution is obtain by replacing the cdf and pdf of exponentiated 

exponential in equation 36A 

∝ 𝛽

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑𝑠𝑙

𝑘

𝜃
𝑒−

𝑥
𝜃 (1 − 𝑒−

𝑥
𝜃)

𝑘−1

((1 − 𝑒−
𝑥
𝜃)

(𝑘−1)

)

𝑙∞

𝑙=𝑜

 

∝ 𝛽

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑘

𝜃
∑ ∑(−1)𝑑

Γ(k(𝑙 + 1) − 𝑙)

Γ(k(𝑙 + 1) − 𝑙 − 𝑑)d!

∞

𝑑=0

𝑠𝑙𝑒
−𝑥(

𝑑+1
𝜃

)

∞

𝑙=𝑜

 

Hence the order statistics for EGEE distribution is 

∝ 𝛽

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑘

𝜃
∑ ∑ ∑ ∑(−1)𝑝+𝑞+𝑙+𝑑

Γ(n − i + 1)Γ(β(q + i)Γα(p + 1)Γ(k(𝑙 + 1) − 𝑙)

Γ(n − i + q + 1)Γ(β(q + i) − p)Γ(α(p + 1) − 𝑙)Γ(k(𝑙 + 1) − 𝑙 − 𝑑)d! q! p! 𝑙!

∞

𝑑=0

𝑒−𝑥(
𝑑+1
𝜃

)

∞

𝑙=𝑜

∞

𝑝=0

𝑛−𝑖

𝑞=0

 

The above expression is equation  36B 

4.1.6    SKEWNESS AND KURTOSIS OF THE EGEE DISTRIBUTION  

        The skewness and kurtosis of the EGEE distribution shall be examined using two 

approaches. These approaches include the measure of skewness(s.k) and kurtosis(k.u) based on 

moments and the measure of skewness and kurtosis based on quantiles.  In the moments based 

approach,  

𝑆. 𝐾 =
𝜇3

/
− 3𝜇𝜇2

/
+ 2𝜇2

(𝜇2
/
− 𝜇2)

3/2
………………………37 

And       𝐾. 𝑈 =
𝜇4

/
−4𝜇𝜇3

/
+6𝜇2𝜇2

/
−3𝜇4

(𝜇2
/
−𝜇2)

2 …………………… . .38 

The quantile measure based approach of evaluating skewness and kurtosis of a distribution is 

particularly useful when the quantile function of a distribution exists in closed form or in a 

simple analytic expression. Galton [23] proposed a quantile measure based approach for 

evaluating skewness while Moor [24] did the same for Kurtosis. Galton’s skewness and Moor’s 

kurtosis is evaluated using the relations 

𝑆. 𝐾 =
Q(6/8) − 2Q(4/8) + Q(3/8) + Q(2/8)

Q(6/8) − Q(2/8)
……… .39 

𝐾.𝑈 =
Q(7/8) − 2Q(5/8) + Q(3/8) + Q(1/8)

Q(6/8) − Q(2/8)
…………40 

 

Since the Quantile function of the EGEE distribution exists in closed form as given in (18), then 

(39) and (40) can be used in evaluating the skewness and kurtosis of the EGEE Distribution.  
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Figure 10 for EGEE Skewness 

 

 
Figure 11 for EGEE Kurtosis 

The 3D plot for skewness and kurtosis were plotted using the quartile function of the EGEE 

distribution with 𝛼 = 𝜃 = 1 while 𝛽 = 𝑘 takes values from 2 to 12.  

 

4.1.7  THE MEAN DEVIATION 

The deviation from the mean (in the case of the symmetric distributions) or the deviation from 

the median (in the case of skewed distributions) can be used as a measure of spread in the 

population. Let 𝑋 be a EGEE random variable with mean 𝜇 = 𝐸(𝑋) and median 𝑀. The mean 

deviation ( 𝐷(𝜇)) from the mean and the mean deviation (𝐷(𝑀)) from the median are defined 

respectively by 

𝐷(𝜇) = 𝐸{|𝑋 − 𝜇|} = ∫ |𝑥 − 𝜇|𝑓𝑥𝑑𝑥 ……………… . .41
∞

−∞

 

 

= ∫ (𝜇 − 𝑥)𝑓𝑥𝑑𝑥
𝜇

−∞

+ ∫ (𝑥 − 𝜇)𝑓𝑥𝑑𝑥
∞

𝜇

 

2𝜇𝐹𝑥(𝜇) − 2∫ 𝑥𝑓𝑥(
𝜇

−∞

𝑥)𝑑𝑥 ……………………………42 

Where ∫ 𝑥𝑓𝑥(
𝜇

−∞
𝑥)𝑑𝑥 and 𝐹𝑥(𝜇) are incomplete moment and cumulative function respectively. 

For EGEE distribution 

𝐷(𝜇) = 2𝜇𝐹𝑥(𝜇) − 2∫ 𝑥𝑓𝑥(
𝜇

0

𝑥)𝑑𝑥 …………… . .43 

𝐹𝑥(𝜇)is obtained from equation 33 as 𝐹(𝑢) = [1 − {1 − (1 − 𝑒−𝜇/𝜃)𝑘}𝛼]𝛽 and ∫ 𝑥𝑓𝑥(
𝜇

0
𝑥)𝑑𝑥 is 

obtain from equation 43 as 
𝑘𝜃

(𝑚+1)2
∑ ∑

(−1)𝑚Γ(𝑘𝑗)

Γ(𝑘𝑗−𝑚) 𝑚!
∞
𝑚=0 𝑗𝑤𝑗

∞
𝑗=0  γ(2, μ) 
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Where γ(2, μ) is lower incomplete gamma function. 

𝐷(𝑀) = 𝐸{|𝑋 − 𝜇|} = ∫ |𝑥 − 𝑀|𝑓𝑥𝑑𝑥 ………44
∞

−∞

 

= ∫ (𝑀 − 𝑥)𝑓𝑥𝑑𝑥
𝑀

−∞

+ ∫ (𝑥 − 𝑀)𝑓𝑥𝑑𝑥
∞

𝑀

 

𝜇 − 2∫ 𝑥𝑓𝑥(
𝑀

−∞

𝑥)𝑑𝑥 ………………………………… . .45 

∫ 𝑥𝑓𝑥(
𝑀

0
𝑥)𝑑𝑥 is obtain from equation 43 as 

𝑘𝜃

(𝑚+1)2
∑ ∑

(−1)𝑚Γ(𝑘𝑗)

Γ(𝑘𝑗−𝑚) 𝑚!
∞
𝑚=0 𝑗𝑤𝑗

∞
𝑗=0  γ(2,M) 

 

4.1.8     ASYMPTOTIC BEHAVIOR  

We seek to investigate the behavior of the proposed model as given in Equation 34 as 𝑥 → 0 and 

as 𝑥 → ∞. This involves considering lim
𝑥→0

𝑓(𝑥) and lim
𝑥→∞

𝑓(𝑥) 

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

[
𝛼𝛽𝑘

𝜃
𝑒−

𝑥
𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1{1 − (1 − 𝑒−𝑥/)𝑘}𝛼−1[1 − {1 − (1 − 𝑒−

𝑥
𝜃)𝑘}𝛼]𝛽−1]

= 0 

lim
𝑥→∞

𝑓(𝑥) = lim
𝑥→∞

[
𝛼𝛽𝑘

𝜃
𝑒−

𝑥
𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1{1 − (1 − 𝑒−𝑥/)𝑘}𝛼−1[1 − {1 − (1 − 𝑒−

𝑥
𝜃)𝑘}𝛼]𝛽−1]

= 0 
These results confirm further that the proposed distribution has a mode ;Oguntunde el at [16]. 

 

4.1.9    RENYI ENTROPY 

The entropy of 𝑋 is a measure of variation of the uncertainty. There are many entropy measures 

studied and discussed in literature but the Renyi entropy is perhaps one of the most popular. The 

Renyi entropy of 𝑋 with EGEE density is given by  

𝐼𝑅(𝜌) =
1

(1 − 𝜌)
𝑙𝑜𝑔 (∫ 𝑓(𝑥)𝜌𝑑𝑥

∞

0

)……………… . .46 

𝑤ℎ𝑒𝑟𝑒 𝜌 > 0 𝑎𝑛𝑑 𝜌 ≠ 1 

𝐼𝑅(𝜌) =
1

(1 − 𝜌)
𝑙𝑜𝑔 (

𝑘𝜌

𝜃𝜌
∑(𝑗𝒘𝒋)

𝜌
∞

𝑗=0

∫ 𝑒−
𝜌𝑥
𝜃 (1 − 𝑒−

𝑥
𝜃)𝜌(𝑘𝑗−1)𝑑𝑥

∞

0

) 

𝐼𝑅(𝜌) =
1

(1 − 𝜌)
𝑙𝑜𝑔 (

𝑘𝜌

𝜃𝜌
∑∑

∞

(𝑗𝒘𝒋)
𝜌

∞

𝑗=0

(
𝜌(𝑘𝑗 − 1)

𝑏
) (−1)𝑏

1

(𝜌 + 𝑏)
)……… . .47 

 

5. 1  MAXIMUM LIKELIHOOD. 

In this section we determine the maximum likelihood estimates (MLEs) of the parameters of  the 

EGEE distribution. For a random sample 𝑥1𝑥2 … . 𝑥𝑛 of size 𝑛, the log-likelihood function of  4 

parameter EGEE distribution is given by 
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𝐿 = ∑ln (𝑓𝑥)

𝑛

𝑖=1

= ∑𝑙𝑛

𝑛

𝑖=1

(
𝛼𝛽𝑘

𝜃
𝑒−

𝑥
𝜃(1 − 𝑒−𝑥/𝜃)𝑘−1{1 − (1 − 𝑒−𝑥/𝜃)𝑘}𝛼−1[1 − {1 − (1

− 𝑒−
𝑥
𝜃)𝑘}𝛼]𝛽−1) 

 

𝑛𝑙𝑛𝛼 + 𝑛𝑙𝑛𝛽 + 𝑛𝑙𝑛𝑘 − 𝑛𝑙𝑛𝜃 − ∑
𝑥

𝜃

𝑛

𝑖=1

+ (𝑘

− 1)∑ln (1 − 𝑒−
𝑥
𝜃) + (𝛼 − 1)

𝑛

𝑖=1

∑ln {1 − (1 − 𝑒−
𝑥
𝜃)𝑘

𝑛

𝑖=1

} + 

(𝛽 − 1)∑ln[1 − {1 − (1 − 𝑒−
𝑥
𝜃)𝑘

𝑛

𝑖=1

}𝛼] 

𝜕𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ln {1 − (1 − 𝑒−

𝑥
𝜃)𝑘

𝑛

𝑖=1

}

+
(𝛽 − 1)∑ [1 − {1 − (1 − 𝑒−

𝑥
𝜃)𝑘𝑛

𝑖=1 }𝛼]𝑙𝑛{1 − (1 − 𝑒−
𝑥
𝜃)𝑘}

[1 − {1 − (1 − 𝑒−
𝑥
𝜃)𝑘}𝛼]

 

 

𝜕𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑ln [1 − {1 − (1 − 𝑒−

𝑥
𝜃)𝑘

𝑛

𝑖=1

}𝛼] 

𝜕𝐿

𝜕𝑘
=

𝑛

𝑘
+ ∑ln (1 − 𝑒−

𝑥
𝜃) − (𝛼 − 1)

𝑛

𝑖=1

∑
(1 − 𝑒−

𝑥
𝜃)𝑘𝑙𝑛 (1 − 𝑒−

𝑥
𝜃)

{1 − (1 − 𝑒−
𝑥
𝜃)𝑘}

𝑛

𝑖=1

+ 

 

𝛼(𝛽 − 1)∑
{1 − (1 − 𝑒−

𝑥
𝜃)𝑘}𝛼−1(1 − 𝑒−

𝑥
𝜃)𝑘𝑙𝑛 (1 − 𝑒−

𝑥
𝜃)

[1 − {1 − (1 − 𝑒−
𝑥
𝜃)𝑘}𝛼]

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝜃
=

−𝑛

𝜃
+ ∑

𝑥

𝜃2

𝑛

𝑖=1

− (𝑘 + 1)∑
𝑥𝑒−

𝑥
𝜃

𝜃2 (1 − 𝑒
−

𝑥
𝜃)

+

𝑛

𝑖=1

(𝛼 − 1)∑
𝑘(1 − 𝑒−

𝑥
𝜃)𝑘−1𝑥𝑒−

𝑥
𝜃

𝜃2 (1 − {1 − 𝑒−
𝑥
𝜃}

𝑘

)

−   

𝑛

𝑖=1

 

(𝛽 − 1)∑
𝛼𝑘(1 − 𝑒−

𝑥
𝜃)𝑘−1𝑥𝑒−

𝑥
𝜃{1 − (1 − 𝑒−

𝑥
𝜃)𝑘}𝛼−1

𝜃2 (1 (−1 − {1 − 𝑒−
𝑥
𝜃}

𝑘

)

𝛼

)

 

𝑛

𝑖=1

 

Solving the nonlinear system of equation of 
𝜕𝐿

𝜕𝛼
= 0,

𝜕𝐿

𝜕𝛽
= 0,

𝜕𝐿

𝜕𝑘
= 0 𝑎𝑛𝑑 

𝜕𝐿

𝜕𝜃
= 0  gives the 

maximum likelihood estimates of 𝛼, 𝛽, 𝑘 𝑎𝑛𝑑 𝜃 respectively. We obtain the 4 × 4 observed 

information matrix through, 
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(

�̂�
�̂�

�̂�
𝜃

)

[
 
 
 
 

(

𝛼
𝛽
𝑘
𝜃

)

(

 
 

�̂�𝛼𝛼 �̂�𝛼𝛽

�̂�𝛽𝛼 �̂�𝛽𝛽

�̂�𝑘𝛼 �̂�𝑘𝛽

�̂�𝜃𝛼 �̂�𝜃𝛽

  �̂�𝛼𝑘 �̂�𝛼𝜃

  �̂�𝛽𝑘 �̂�𝛽𝜃

 
�̂�𝑘𝑘 �̂�𝑘𝜃

�̂�𝜃𝑘 �̂�𝜃𝜃 )

 
 

]
 
 
 
 

 

 

𝑉−1 = −𝐸

(

 
 

𝑉𝛼𝛼 𝑉𝛼𝛽

𝑉𝛽𝛼 𝑉𝛽𝛽

𝑉𝑘𝛼 𝑉𝑘𝛽

𝑉𝜃𝛼 𝑉𝜃𝛽

  𝑉𝛼𝑘 𝑉𝛼𝜃

  𝑉𝛽𝑘 𝑉𝛽𝜃

 
𝑉𝑘𝑘 𝑉𝑘𝜃

𝑉𝜃𝑘 𝑉𝜃𝜃 )

 
 

 

Where  

𝑉𝛼𝛼 =
𝜕2𝐿

𝜕𝛼2
, 𝑉𝛽𝛽 =

𝜕2𝐿

𝜕𝛽2
, 𝑉𝑘𝑘 =

𝜕2𝐿

𝜕𝑘2
, 𝑉𝜃𝜃 =

𝜕2𝐿

𝜕𝜃2
 

𝑉𝛼𝛽 = 𝑉𝛽𝛼 =
𝜕2𝐿

𝜕𝛼𝛽
  , 𝑉𝛼𝑘 = 𝑉𝑘𝛼  =

𝜕2𝐿

𝜕𝛼𝑘
, 𝑉𝛼𝜃   = 𝑉𝜃𝛼 =

𝜕2𝐿

𝜕𝜃𝛼
,   

𝑉𝛽𝑘 = 𝑉𝑘𝛽 =
𝜕2𝐿

𝜕𝛽𝑘
,   𝑉𝛽𝜃 = 𝑉𝜃𝛽 =

𝜕2𝐿

𝜕𝜃𝛽
 , 𝑉𝑘𝜃 = 𝑉𝜃𝑘 =

𝜕2𝐿

𝜕𝜃𝑘
 

The solution to the above inverse dispersion matrix yields the asymptotic variance and 

covariance of the maximum likelihood estimators  �̂� �̂� �̂� and 𝜃. The confidence interval for 

𝛼, 𝛽, 𝑘 𝑎𝑛𝑑 𝜃 is given by 

�̂� ± 𝑍𝛼
2
√�̂�𝛼𝛼  , �̂� ± 𝑍𝛼

2
√�̂�𝛽𝛽  , �̂� ± 𝑍𝛼

2
√�̂�𝑘𝑘   , 𝜃, ±𝑍𝛼

2
√�̂�𝜃𝜃   

Where 𝑍𝛼

2
 is the 𝛼𝑡ℎ percentiles of the standard normal distribution. 

 

6.1   SIMULATION STUDY 

Simulation study is conducted using the quartile function of the EGEE distribution in equation 

19 with the help of R-statistics package, a sample size n=10 is used with different shape and 

scale parameters combination.  Table 1; contain the mean, standard deviation and median of the 

4-parameter EGEE distribution for different parameter values. In Table2, some values of 

Skewness and Kurtosis are obtained with the same combination of parameters 

Table 1:   The mean ,standard deviation and mean deviation of EGEE distribution for ϴ = 2,4 and 6 

β α K Ѳ=2     Ѳ=4     Ѳ=6     

      Mean SD MD Mean SD MD Mean SD MD 

0.5 0.5 0.5 0.9881 1.1960 0.9494 1.9763 2.3920 1.8988 2.9645 3.5880 2.8483 

  

0.8 1.4591 1.4541 1.5719 2.9182 2.9095 3.1438 4.3772 4.3642 4.7158 

  

5 4.0798 2.3439 4.7558 8.1596 4.6879 9.5117 12.2394 7.0317 14.2675 

  

8 4.9063 2.4738 5.6598 9.8126 4.9477 11.3196 14.7189 7.4215 16.9794 

 

0.8 0.5 1.7873 1.6779 1.9866 3.5747 3.3557 3.9731 5.3619 5.0336 8.9649 

  

0.8 2.3864 1.9472 2.7638 4.7729 3.8943 5.5276 7.1592 5.8416 8.2914 

  

5 5.3494 2.6859 6.1927 10.6988 5.3719 12.3854 16.0482 8.0577 18.5782 

  

8 6.2219 2.7717 7.1155 12.4438 5.5433 14.2309 18.6656 8.3149 21.3464 

 

5 0.5 6.9609 3.3771 8.1485 13.9219 6.7543 16.2971 20.8829 10.1314 24.4456 

  

0.8 7.8523 3.4522 9.0821 15.7045 6.9045 18.1642 23.5568 10.3567 27.2464 
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5 11.4456 3.5659 12.7383 22.8912 7.1319 25.4766 34.3369 10.6978 38.2149 

  

8 12.3803 3.5744 13.6777 24.7607 7.1489 27.3553 37.141 10.7233 41.0329 

 

8 0.5 8.6479 3.5899 9.9517 17.2959 7.1798 19.9033 25.9437 10.7695 29.855 

  

0.8 9.5646 3.6279 10.8891 19.1292 7.2559 21.7782 28.6938 10.8839 32.6672 

  

5 13.1962 3.6832 14.5506 26.3925 7.3663 29.1012 39.5887 11.0495 43.6518 

  

8 14.1338 3.6871 15.4904 28.2676 7.3744 30.9807 12.4015 11.0616 46.4711 

5 0.5 0.5 0.0219 0.0341 0.0166 0.0437 0.0683 0.0333 0.0656 0.1024 0.0499 

  

0.8 0.0988 0.1052 0.1025 0.1977 0.2104 0.205 0.2966 0.3156 0.3075 

  

5 1.6329 0.7460 1.9305 3.2659 1.4920 3.8609 4.8989 2.2382 5.7914 

  

8 2.3349 0.8861 2.7023 4.6698 1.7721 5.4046 7.0047 2.6582 8.1069 

 

0.8 0.5 0.0449 0.0540 0.0431 0.0899 0.1081 0.0861 0.1349 0.1621 0.1292 

  

0.8 0.1672 0.1449 0.1891 0.3344 0.2898 0.3781 0.5016 0.4346 0.5672 

  

5 1.9778 0.7475 2.2819 3.9555 1.4951 4.5638 5.9332 2.2426 6.8457 

  

8 2.7302 0.8514 3.0851 5.4603 1.7028 6.1701 8.1905 2.5542 9.2552 

 

5 0.5 0.2658 0.1644 0.3100 0.5316 0.3288 0.6200 0.7973 0.4932 0.9301 

  

0.8 0.6080 0.2884 2.1169 1.2160 0.5769 1.4113 1.8241 0.8654 2.1169 

  

5 3.2184 0.6224 3.4699 6.4368 1.2447 6.9398 9.6552 1.8671 10.4097 

  

8 9.6552 1.8671 10.4097 8.1439 1.3114 8.6781 12.2159 1.9671 13.0171 

 

8 0.5 0.3567 0.1928 0.4144 0.7134 0.3856 0.8289 1.0701 0.5784 1.2434 

  

0.8 0.7549 0.3111 0.8642 1.5098 0.6223 1.7284 2.2647 0.9334 2.5926 

  

5 3.5005 0.5911 3.7378 7.0001 1.1829 7.4756 10.5014 1.7734 11.2135 

    8 4.3669 0.6174 4.6174 8.7339 1.2348 9.2329 13.1008 1.8522 13.8492 

 

Table2 :   The Skewness and Kurtosis of EGEE distribution for ϴ = 2,4 and 6 

β α k Ѳ=2 

 

Ѳ=4 

 

Ѳ=6 

       SK KT SK KT SK KT 

0.5 0.5 0.5 1.5700 1.6535 1.5700 1.6535 1.5700 1.6535 

  

0.8 1.1411 0.6917 1.1411 0.6917 1.1411 0.6917 

  

5 0.1097 -0.7757 0.1097 -0.7757 0.1097 -0.7757 

  

8 0.0036 -0.8161 0.0036 -0.8161 0.0036 -0.8161 

 

0.8 0.5 0.9649 0.3352 0.9649 0.3352 0.9649 0.3352 

  

0.8 0.6261 -0.2490 0.6261 -0.2490 0.6261 -0.2490 

  

5 -0.0394 -0.8538 -0.0394 -0.8538 -0.0394 -0.8538 

  

8 -0.1001 -0.8582 -0.1001 -0.8582 -0.1001 -0.8582 

 

5 0.5 -0.2396 -0.9347 -0.2396 -0.9347 -0.2396 -0.9347 

  

0.8 -0.2827 -0.9132 -0.2827 -0.9132 -0.2827 -0.9132 

  

5 -0.3461 -0.8721 -0.3461 -0.8721 -0.3461 -0.8721 

  

8 -0.3507 -0.8687 -0.3507 -0.8687 -0.3507 -0.8687 

 

8 0.5 -0.3333 -0.8971 -0.3333 -0.8971 -0.3333 -0.8971 

  

0.8 -0.3541 -0.8816 -0.3541 -0.8816 -0.3541 -0.8816 

  

5 -0.3837 -0.8574 -0.3837 -0.8574 -0.3837 -0.8574 

  

8 -0.3858 -0.8556 -0.3858 -0.8556 -0.3858 -0.8556 

5 0.5 0.5 1.9758 2.7099 1.9758 2.7099 1.9758 2.7099 
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0.8 1.3206 1.08311 1.3206 1.08311 1.3206 1.08311 

  

5 -0.4770 -0.9557 -0.4770 -0.9557 -0.4770 -0.9557 

  

8 -0.6179 -0.8201 -0.6179 -0.8201 -0.6179 -0.8201 

 

0.8 0.5 1.5949 1.7345 1.5949 1.7345 1.5949 1.7345 

  

0.8 0.8203 0.0853 0.8203 0.0853 0.8203 0.0853 

  

5 -0.5867 -0.8213 -0.5867 -0.8213 -0.5867 -0.8213 

  

8 -0.6843 -0.7056 -0.6843 -0.7056 -0.6843 -0.7056 

 

5 0.5 0.2204 -0.6939 0.2204 -0.6939 0.2204 -0.6939 

  

0.8 -0.1743 -0.6876 -0.1743 -0.6876 -0.1743 -0.6876 

  

5 -0.6454 -0.6876 -0.6454 -0.6876 -0.6454 -0.6876 

  

8 -0.6735 -0.6565 -0.6735 -0.6565 -0.6735 -0.6565 

 

8 0.5 0.05313 -0.3008 0.05313 -0.3008 0.05313 -0.3008 

  

0.8 -0.3109 -0.4021 -0.3109 -0.4021 -0.3109 -0.4021 

  

5 0.7379 -0.1575 0.7379 -0.1575 0.7379 -0.1575 

    8 -0.7636 -0.1295 -0.7636 -0.1295 -0.7636 -0.1295 

 

 

7.1  CONCLUSION  

We defined and derived the four parameter Exponentiated Generalized Exponentiated 

Exponential distribution using Exponentiated Generalized Family as the generator and 

exponentiated exponential as base line distribution. Plot of EGEE density function for different 

parameter values are given in figure1. The graph shows that EGEE  distribution can be 

monotonically decreasing (reversed J shape), left skewed, right skewed and unimodal depending 

on the shape parameters 𝛼, 𝛽beta and 𝜃.The cumulative distribution function (cdf) of EGEE in 

Figure 4 shows a satisfactory level of cdf not exceeding 1 on the y-axis. The shape parameter 

values have a strong influence on the shape of the graphs. As the parameter values reduce the 

movement on the x-axis tends to disappear. The hazard function graphical displayed in figure 7, 

shows a decreasing and constant display for parameter values less than zero, while the 

combination of other parameter values shows similar movements but at different pace on the 

graph. In Table 1, it is observed that the mean, standard deviation and mean deviation are 

increasing functions of the scale parameters 𝜃 when the other parameters are held constant. 

Increasing the scale parameter 𝜃 increases the mean, standard deviation and median deviation for 

fixed 𝛼, 𝛽𝑎𝑛𝑑 𝑘. The mean, standard deviation and median are increasing function of the shape 

parameters 𝛼, 𝛽𝑎𝑛𝑑 𝑘. An increase in one of the shape parameters when others are held constant 

increases the values of the mean, standard deviation and mean deviation of EGEE distribution. In 

Table 2, Skewness and kurtosis remain constant as the scale parameter 𝜃  increases when the 

shape parameters are held constant. An increase in the shape parameters reduces the values of 

skewness and kurtosis when the scale parameter is held constant. The EGEE distribution can be 

as an alternative distribution where the sub-models are applied. 
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