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Abstract:

We consider the epidemiological characteristics of Typhoid fever infection in this paper in the equation of a
fractional-order mathematical model in Caputo derivative. The interventions that are employed in the model to
control the disease include treatment and vaccination to investigate the impact of the controls on the dynamics
of the disease. The existence and uniqueness of solutions under the frame of the fractional order and the stability
of the endemic equilibrium point are defined and tested by the theory of Lyapunov functions. The model is
numerically determined by using the fractional Adams-Bashforth-Moulton algorithm to point out the
modification of the model parameters and the fractional orders of the model parameters into the influence of
each of the above parameters on the disease progression. It has been demonstrated by the use of simulation that
increased treatment and vaccination of the disease reduces the prevalence of Typhoid fever, and indicates the
high degree of flexibility and realism of the fractional-order models compared to the classical integer order
equations. The significance of fractional modeling in the description of the interactions between the effects of
memory and nonlocal interaction between the biological systems is identified in the paper, and this improves the
comprehension and management of infectious diseases. The model however presupposes that the population is
homogeneous mixed and hypothetical values of the parameters therefore inhibits empirical validation. In order
to render the model more predictive and applicable in practice in the development of effective control strategies
on Typhoid fever, future investigations should be able to incorporate the spatial heterogeneity, stochastic effects.
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1.0 Introduction

Typhoid fever, a serious illness caused by Salmonella Typhi, remains a major global health
threat, especially in developing regions. Poor hygiene allows the bacteria to spread through
contaminated food and water, leading to millions of infections and hundreds of thousands of
deaths each year. The impact is starkly different from one community to another. For
instance, while the Mekong Delta in Vietnam sees 198 cases per 100,000 people, Delhi,
India, experiences a much higher rate of 980 per 100,000. History shows that improving basic
living standards like access to clean water and sanitation is one of the most effective ways to
reduce transmission. To fully combat this disease, we need a worldwide research effort that
examines the problem from every angle, from the microscopic interaction between the
pathogen and its host to the larger social, economic, and environmental factors that allow it to
thrive.

Mathematical modeling has become a cornerstone of modern epidemiology, offering a way to
simulate how diseases spread and to test the potential impact of interventions like vaccines.
By translating biological processes into equations, these models help scientists pinpoint the
most critical factors that drive an outbreak. A common and powerful approach uses systems
of ordinary differential equations (ODEs). When built with the right assumptions and
parameters, these equations can effectively represent the complex dynamics of disease
transmission. For example, Fraser and colleagues (2007) used such a model to
comprehensively assess how vaccination programs can alter the spread of typhoid fever.

To tackle public health crises like typhoid fever, scientists often turn to mathematical models.
These models, built using differential equations, help us understand the core biological
mechanisms that drive how a disease spreads. This entire field, known as mathematical
epidemiology, has produced numerous studies on typhoid transmission, with foundational
work from researchers like Ashcroft (1964) and Fraser et al. (2007), and continued by many
others.

While traditional models are useful, fractional differential equations offer a more powerful
way to simulate complex biological systems like disease spread. Their key advantage is a
"memory effect,” which allows the model to incorporate the past history of the disease such
as previous infections and treatments into its current state.

In this paper, we use this advanced approach to model the transmission of typhoid fever,
specifically including the effects of treatment and vaccination campaigns. By simulating
different intervention scenarios, we can identify the most effective strategies to reduce the
disease's prevalence. This method provides a more realistic picture, which is crucial for
tackling persistent challenges like drug resistance, re-infection, and limited healthcare
resources.

Fractional calculus is a powerful branch of mathematics that has evolved significantly over
time. As highlighted by Atokolo et al. (2022), its true strength lies in modeling complex, real-
world systems.

Unlike simpler "classical™ models that only capture a snapshot in time, fractional-order
models have a "memory." This means they can account for how past events influence the
present, providing a more complete and realistic picture of a system's overall behavior.
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This is especially valuable in understanding infectious diseases like typhoid fever. By more
accurately depicting how the disease spreads over time, these models offer a stronger
foundation for developing effective control strategies.

Think of modeling a disease like trying to understand a story. Traditional mathematical tools,
known as Caputo and Riemann-Liouville derivatives, have been the go-to methods for years
to write these "biological stories." More recently, scientists have started using newer, more
advanced tools like the Mittag-Leffler and Atangana-Baleanu operators, which can often tell
a smoother and more realistic results.

Recent years have seen a significant shift in mathematical epidemiology towards using
fractional-order models to understand and combat infectious diseases. Unlike traditional
models, these sophisticated tools can incorporate the "memory" of a system, leading to more
realistic simulations of complex disease dynamics.

This approach has been successfully applied across a wide spectrum of public health threats.
The work of Atokolo et al. (2022) on the Zika virus and Atokolo et al. (2023) on Lassa fever
demonstrated how fractional-order models, solved using methods like the Laplace Adomian
Decomposition Method (LADM), are effective for evaluating control strategies.
Similarly, Yunus et al. (2023) found that a fractional COVID-19 model for Nigeria showed a
better predicted recovery rate when vaccination and treatment were included, outperforming
classic integer-order models. The flexibility of these models is further highlighted by their
application to diverse pathogens. Omede et al. (2024) used a Caputo derivative-based model
for soil-transmitted helminths, while Amos et al. (2024) and James et al. (2024) focused on
Hepatitis C and HIV/AIDS, respectively. These studies, often employing the Adams-
Bashforth-Moulton method, consistently found that fractional models were more adaptable
and better at showing how reduced contact rates and effective treatment can curb
transmission. This finding was reinforced by Abah et al. (2024), who also used the Adams-
Bashforth-Moulton method to capture the nuanced impact of public health interventions.

Finally, the power of fractional calculus extends to modeling complex co-infections. Ahmed
et al. (2021) developed an ABC-fractional order model to control the co-epidemic dynamics
of HIV and COVID-19, and the comprehensive review by Smith et al. (2023) synthesized the
latest modeling approaches for Hepatitis C and COVID-19 co-infections, identifying key
trends and future research directions.

Fractional-order models are gaining popularity because they offer a more adaptable and
realistic way to model complex systems. Their key strength lies in capturing "non-local” and
"memory" effects meaning they can account for how past conditions and distant interactions
influence the present, something traditional models often miss.

This powerful ability to handle real-world complexity has inspired researchers to apply
fractional calculus to increasingly challenging mathematical problems. For instance, building
on foundational work like that of Ali et al. (2017), who pioneered stability analysis for
fractional boundary value problems, others like Ullah et al. (2024) have developed innovative
methods. Ullah's team, for example, combined Laplace transforms and decomposition to
solve complex fuzzy integral equations, pushing the boundaries of dynamic systems theory.
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The objectives that this paper is expected to accomplish are as follows:
e The proposed fractional-order model must have existence and uniqueness of

solutions.

e Use Lyapunov function to perform a stability analysis of the endemic equilibrium
point.

e Numerically computing solutions using the fractional Adams-Bashforth-Moulton
method.

e Carry out numerical simulation so that the model behavior can be studied.
Our review of existing research on typhoid fever models revealed a gap: no previous study
has used the Adams-Bashforth-Moulton method within a fractional calculus framework to
simulate and analyze the typhoid fever transmission and control.
This paper is organized to address this gap. In Section 2, we present the mathematical model.
Section 3 provides the analytical solutions, followed by the numerical results in Section 4.
Finally, Section 5 offers a conclusion and discussion of our findings.

1.1Preliminary

This section covers the basics of fractional calculus. We will use the right and left Caputo
fractional derivatives, following the work of Milici et al. (2018) and Bonyah et al. (2020).
We'll also show how this powerful math is used to solve real-world problems in fields like
physics, engineering, and biology.

Definition 1: Let f e A”(R) then the left and right Caputo fractional derivative of the
function f is given by:

“D/f(t)= (tD Gj f(t)J

°D; f (t):ﬁi‘((t—ﬂ)"_ﬂ £ (4))2 (1)

The same way

°D;f(t) :[D;(”‘” (‘d—fn f(t)

o Y4 _ (_1)” T _ n
D! f (t)_—) [(a-t)  fr(2)da
t
Definition 2: The generalized Mittag-Leffler function EN, (x) for x e R is given by

;an),%wo @

which can also be represented as
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1
E}’yl// (X) = XE}/,}/Jru/(X) + F(V/) (3)
E,, (x)=L[t""E -5 (4)
A e R

Proposition 1.1

Let f eAOO(R)mC(R)and yeRn-1<y<n,

therefore, the conditions given below holds:
LoD/ f(t)=f(t)

n-k tk
2. thylyf (t)="f (t)_Zk—OEf “(t)
3.1 Model Formulation
In modeling the dynamics, the population is divided into seven groups: Susceptible human
population (S, ), Exposed human population (E,) Vaccinated human population (V, ),
infected human population (1, ), humans on typhoid fever treatment (T, ) , Recovered human

population (R, ) and bacteria population.

The susceptible humans are recruited at the rate of A, , while the susceptible bacteria

population are recruited at the rate of A, Contact rate between the susceptible humans and

infected humans population with typhoid fever, Contact rate between the susceptible humans
and human population on typhoid fever treatment, Contact rate between the susceptible

humans and bacteria population are £, , 3, and S, respectively. Natural death rate of human

population and bacteria population are 4, and  respectively. Disease induced death rate of

typhoid fever infected humans, Disease induced death rate of humans on typhoid fever
treatment are 6, and o, respectively. typhoid fever re-infection rate of recovered human

population o, Vaccination rate of susceptible human population against typhoid fever ¢, ,
Waning rate vaccineg, Progression rate from Exposed human population to typhoid fever

infected human population 8, Treatment rate of typhoid fever infected human population 7,
Recovery rate due to treatment of typhoid fever a.

3.2 Model Assumptions

1. We assume an imperfect vaccine in the human population
2. We assume exogenous re-infection in human population
3. We assume natural death in the population
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4. We assume disease induced death in the population.

3.3 Model Flow Chart

Fig.1: Typhoid fever model flow Diagram

3.4 Model Equations

ds

d—th:Ah+¢2Vh+0'Rh—thh_(¢1+'uh)shv

dE

d_th_whsh (‘9+'uh)Eh

dv,

d—th:¢1sh (¢2+'uh)vh

dl,

E=9Eh_(77+51+:uh)lh,

dT,

d—th:nlh—(a+5z+ﬂh)-rh,

dR

d_th:aTh_(o--i_'Llh)Rh'

dB

E:AB—/L!BB.
_(ﬁ1|h+ﬂ2Th+ﬂ3B)
=

Where N»
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3.5 Model Variables and Parameters Descriptions

Variables Descriptions

S, Susceptible human population to Typhoid fever Fage No. 74

E, Exposed human population to Typhoid fever

Vv, Vaccinated human population against Typhoid fever

I, Infected human population with Typhoid fever

T, Human population on Typhoid fever treatment

R, Recovered human population from Typhoid fever

B Bacteria population

Parameters Descriptions

A, Recruitment rate of human population

A, Recruitment rate of the bacteria population

&, Vaccination rate of human population

B, The frequency of contact between healthy individuals and people
infected with typhoid.

B, The frequency of contact between healthy individuals and people
on typhoid fever treatment.

é, Waning rate of vaccine in the human population

m Natural death rate of human population

iy Natural death rate of Bacteria population

0 Progression rate from Exposed human population to infected human
population

n Treatment rate of infected human population

a Recovery due to treatment rate of human population

o Rate at which recovered humans become susceptible again

) Disease induced death rate of infected humans with typhoid fever

3, Disease induced death rate of humans on typhoid fever treatment

4.0 Integer order Model Equation

ds

d_th =A, +oV, +oR -y, S, —(¢1+,Uh)sh’

dE,

5 =S (0+m)E, ®)
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dv
d_th =4S, _(¢2 + 4, )Vh

di

d_hzeEh_(n—i_é‘l—i_:uh)lh’
t

dT,

d—h=77|h—(a+52+/,zh)Th,
t

dR

d—thzaTh—(0'+,uh)Rh,

dB

E:AB — 1B

4.1 Fractional-order Mathematical Model

To developa more adaptable model of typhoid fever, we have reframed the original integer-
order model (Eg. 5) using a Caputo fractional derivative. This key change allows the model
to capture a broader spectrum of potential outbreak scenarios, offering a significant
improvement in realism over the classical approach.

The fractional Typhoid fever method is therefore presented as follows;

DYS = A, + 4§V, + R, ~04S, — (A + 14)S,.
D/E, =y,S, —(0+ 4, ),

DV, =4S, _(¢z + ty )Vh

D1, = 0, —(17+3,+4,) 1,

DT, =nl, —(a+6,+ )T,
“D/R,=aT,—(c+1,)R,,
“DYB = A, — 4, B,

(6)

Where L =(¢4+u,) L, =(0+m) Li=(d+u) Li=(n+S+u) Ls=(a+5,+u)
Le=(o+u,). “ ()

Subject to the positive initial conditions

5,(0) =510, B4 (0) =iV, (0) =Viou 4 (0) = o Ty (0) =Ty Ry (0) =R B(0) =By g

4.2 Positivity of Model Equation
We considered the non-negativity of the initial values
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IimSup.Nh(t)sﬂ,

Hh

. A
Secondly, If limSup.N,, (t)<—", then our model feasible domain is given by:
h

Q:{(Sh,Eh,Vh, L, T..R,, B)c R/:S,+E,+V,+1 +T +R, + Bgﬂ,}
Hn , SO that

Q=Q. cR/,
hence Q is positively invariant.

If (Sho, Enor Vio: lhos Thot Rios BO) are non-negative, then the solution of model (6) will be
non-negative for t> 0. From Eq. (6), picking the first equation, we have that:

D/S=A, +d\V, +oR, —w, S, —(d + 14,) Sy,

D/S+y,S, +(d +1,)S, =A, + 6V, +oR,,

A, +oV, +oR, =0, Then,
“D/S+y,S, +(d+14)S, =0

Applying the Laplace transform, we have:

L[ °D/S |+ L[w,Sy + (4 +14,)S, |20
$/Sy (5) =SS, (0)+[wy, +(dh + 4,) ]Sy (5) 20,

S, (s) S 3 s, (0).

>
Shy+[l//h +(é+

By taking the inverse Laplace transform, we obtained ;

S (t) e Er,l(_I:Wh +(¢1 + iy, )]t7)8h0 -

Now since the term on the right-hand side of Eq. (9) is positive, we conclude that S >0 for
t>0. In similar way, we also have that (S, >0,E, >0,V, >0,I,>0,T, >0,R, >0,B>0),
that is positives; therefore, the solution will remain in R for all t>0 with positive initial

conditions.

4.3 Boundedness of fractional Model Equation
The total population of individuals from our model is given by;

N, (t)=S,(t)+E, (t)+V, (t)+1, (t)+ T, ()+R, (t).
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So from our fractional model (6), we now obtain:

"D/N, (t)="D/S, (t)+° D E, (t)+° D/ V, (t)+° D/ 1, (t)+° D/ T, (t)+° D/ R, (t).

CDtyNh(t):Ah_/JhNh (t) (10)

We the take the Laplace transformation of (10) to get:

L[ *D/N,(®) | < L[ A, = 2,N, (1) ]
SN, (6) =7 N, (0) + N, (s) < 22
Hy

S/ A,
—h N, (0)+——"—
(St+u) " S, (S{+um)

We take the inverse Laplace transform of Eq. (11), we obtained:

N; (s) <
(11)

N, () <E,, (_,Uhty) N, (0) +y,E, (_;Uhty)

At t — o0, the limit of Eq. (12) becomes

(12)

i A
!LrQSupNh(t)zﬂ—h.

h

A A
This means that, if Ny, <—". then N, <=". which implies that, N, (t) is bounded.
Hy Hy

We now conclude that, this region Q=Q, , is well posed and equally feasible
epidemiologically.
4.4 Existence and Uniqueness of our Model Equation

Let the real non-negative be P, we consider Q =[0,P].

The set of all continuous function that is defined on M is represented by Ne0 (Q) with norm
as;

[X] = sup{|X (1), teQ}.

Considering model (6) with initial conditions presented in (8) which can be denoted as an
initial value problem (IVP) in (13).

"Dy (t)=Z(t, X (t)),0<t<P <o,
X (0)=X,.
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Where Y (t) =(S, (t),E, (t), Vi, (1)1, (1), T, (t),R, (t), B(t)) represents the classes and Z be
a continuous function defined as follows:

Z ('[,Sh (t)) A+ oV, +oRy _(ﬂllh +ﬁ|)\2|Th +ﬂ38jsh _(¢1+ﬂh)sh
Z, (t’Eh(t)) | T B
Z3(t,Vh(t)) ['Bl h+l‘i\zlhh+ﬁ3 ]Sh_(e‘i':uh)Eh
Z(tX(t)=] Z,(t.1,(1)) |= 45, — (¢, + 1V, ..(14)
Z, (6T, (1)) OE, —(n+6,+ )1,
Ze(t,Rh(t)) nl, —(a+6,+m,)T,
Z,(t.B(t)) aTy —(o+ )R,
Ag — B

Using proposition (2.1), we have that,

S, (t)=Sh0+ I/ {Ah +¢V, +oR, _(ﬂllh +,3|\21Th +ﬂsB]Sh —(¢1+,uh)sh:|,

Eh (t)z Eh0+ |t7 I:(ﬁllh +,‘i\2|Th +ﬁaBjSh —(9+,uh)Eh:|,

V, (£)=Vip + 17 [ S, = (b + 4, )y |,
Ly () = oo + 1/ [ OE, —(17+ 6, + 1)1y,

(15)
Ty (1) =Too + 17 [ 171, — (@ + 8, + 1,) T, ],
R, (t)=Ry+1/[aT, —(c+)R, |,
B(t)=B,+1/[As —13B].
We obtain the Picard iteration of (15) as follows:

_ 1 t y-1

S (1) = S0 e [[(t=2)72,( 2,80 (2))d 2,
1 t _

E,. (t) = Ep +W [L(t=2)"2,(4.Eypy (i))d A,

_ 1 t y-1
th(t)—VhOerJ.O(t—/l) Zy (A Voo oy (4))d 2,

1 _

L (£) = L T [ (=272, (200 (2))d 2, (16)

T (1)=T, +ﬁ [(t=2) 7 Z(A Ty (2))d 2,
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Ry (£) = Reg +$ [L(t=2) "2, (AR, (7)) 02,
B, (t)=B, +ﬁ [[(t=2Y"2, (2,8, (2))d2

We transformed the initial value problem of Eq. (13) to obtain:

1 [((t=2Y"Z(4 X (2))dA.

X=X )+ 55 -

Lemma 1, The Lipchitz condition described from Eq. (14) is satisfied by vector Z (t, X (t))

on a set [0, P]x RZ with the Lipchitz constant given as;

B=max((B + B+ B+ + 1), (0+ 1), (o + 1), (046, + a1, ), (@ + 8, + 1) (0 + a4, ) (0 1), 1

Proof.
Hzl (t,S,)-2Z, (t,Shl)H

I +4T +5.B
Ah+¢2Vh+GRh_(ﬂ1 : ,3,\2| n* ]Sh_(¢1+luh)sh
h

I+ 48T + 6.B
_Ah_¢2Vh_O-Rh_(ﬁl " '%I Py jsh_(¢l+uh)shl
h

<(B+B+B)

| T, B
:H_ By + BT, + 5, Sy~ Suul|+ 26 S — Su

N, }_(¢1+/uh)(sh_Shl)+:uh(8h_sh1)

Hzl (t.Sh)-Z,(t, Shl)” S (ﬂl* +B, + B i+, )”Sh =Sl

Similarly we obtained the following;

o (6B0) =2, (6| <(0+ 24,)|Br— B
3 (L Vh)—Z,(t, hl)HS(¢2+/’h)"\/h_Vh1”’
|z, (t.1,) -2, (t, 'm)H (17+0,+ )1y = V|
(
(
(

125 (t.T) = Zs (6. Ty )| < (o + 8, + 14, [T =T (18)

.R,)-Z ( )H (U+ﬂh)”Rh_Rh1”'
B

Where we obtained:

Hz (t.X,(1))-Z (1. X, (t))H < BIX, =X,
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ﬂ=maX((ﬂf+ﬂ§+ﬂ§+¢1+ﬂ),(9+uh),(¢z+uh)”(77+51+ﬂh),(a+52+ﬂh),(0+ﬂh)(0+uh),u
(19)

Lemma 2. The initial value problem (6), (7) in Eq. (19) exists and will have a unique
solution.

X(t)e A (1).

We use the Picard-Lindelof and fixed point theory to consider the solution of

We defined the Picard operator expressed as S:
S:A(f.R])>A(f,R]).

Therefore

which becomes:

I8, (%,(1)) =, (% (V)]

_ ﬁ[f;(t—ﬂ)y‘lz(ﬂ,xl(z))—z(A,XZ(z))dﬂ}
< F(l;/) [(t=2) 7|2 (2 X,(2))-Z (4%, (2))d .
< r(ﬁy) [ (t=2) X=X, d 2

Is, (%, (1)-S, (X, (t))”sﬁ.

B
S, <1
When F(}/ +1) "~ then the Picard operator gives a contradiction, so Eq.(6) , (7) solution

IS unique.

4.5 Disease Free Equilibrium Point
It is a state where there is no disease, this implies
S,#0,E,=0,V, #0,1,=0,T, =0,R, =0,B #0.

The state is represented by E, ={S{,Ef,Vy, 17, T¢, RY, B}
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@&Eam&mn&R&m=[ Moldetth) o gt ,aqaéa}
:uh(¢2+¢l+/uh) ﬂh(¢2+¢1+ﬂh) Hp

4.6 Basic Reproduction Number

In epidemiology, the basic reproduction number was identified as a major measure of
potential in an outbreak. In the case of Typhoid fever, it is the mean number of secondary
cases produced by one infected individual within a fully susceptible community. In order to
calculate this value to use in our model, we used the already proven next-generation operator
technique on the system of equations.

Hence, it follows that:

R, = p(FV ™) where pis the dominant Eigen value of FV ™
To find the basic reproduction number R, for the Typhoid fever model, we use the formula:

R,=p(FV™)  where pdenotes the spectral radius, F is the matrix of new infections, and
V is the matrix of transitions.

Given:
131(¢2+/Uh) ﬁ2(¢2+ﬂh) ﬂ3(¢2+ﬂh) L 0 0 0
h+d+uy,  hrhtu HTotu, _; L 0 0
F= and V = ‘
0o : : 0 L 0
0 0 0 L
0 0 0 0
i 0 0 O
L,
o 1 4 9
vz LL, L,
no n_ 1
LLL LG L
0 0 0 i
L,
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ﬂ1(¢2+ﬂh)€ + ﬂz(¢z+ﬂh)770 ﬂl(¢2+;uh) + ﬂ2(¢2+ﬂh)77 :Bz(¢z+,uh) ﬂ3(¢2+ﬂh)
(¢2+¢1+ﬂh)|-2|-4 <¢2+¢1+/‘h)|-4|-2|-5 (¢2+¢1+/‘h)|-4 (¢2+¢1+ﬂh)|-4|-5 (¢z+¢1+/‘h)|-5 (¢2+¢1+ﬂh)|-7

FV= 0 0 0 0
0 0 0 0
0 0 0 0

0

0

Eigen values = 0

H(Uﬂzﬂh +1 5,0, + LB, + L5ﬂ1¢2)
LL,Ls (¢2 +d +ﬂh)

o _ OBt 0ot + LBy + LBy
i L2L4L5(¢2+¢1+,Uh)

This is the largest Eigen value.

4.7 Endemic Equilibrium Point of Typhoid fever

Endemic equilibrium point refers to the point of a limited disease within the population in
which the disease stays constant.

At endemic equilibrium point S, #0,E, #0,V, #0,1, #0,T, #0,R, #0,B #0.

. AL LLLL
" LLL (v L)L +dd, )L +anctly,
E =- A LLLLy, 1
LiLLe (v — L) L + s )L, +ano Ly,
V. ALL Ll |
LeLoLs (v, —L) L+ 14, ) L, +ano Ly,
I = Wiy LsLslsf ,
LLyLs (v —L) L+, ) L, +anobly,
T o Vil Ls st
" LLL (v -L)L+dd, )L +anctly,
. _ ay, A Lo

_0”70"9L31//h —LLLL L L - LLL L Ly, + LLLLdd,
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(ﬂllh + BT, +ﬁaB)
N,

Substituting into the force of infection y, = we have:

Qu,, +Q, :0.

Q =(andL LA, +nLLLA, +OLLLLA, + LLLLLA,),

0, = LLLLLLA, (1_ (1B, + 1) + LBty + Lsid, )]’

L2L4L5(¢z +¢1+,Uh)

Q= LLLLLLA, (1-R,).
This implies that the above model has a stable endemic equilibrium point if R, > 0.

4.8 Global Asymptomatic Stability of the Disease-Free Equilibrium Point
The global stability of the equilibrium point was studied using the direct Lyapunov method.
The global stability of the endemic equilibrium (a situation, which occurs when R, >1 )

implies that the disease will not go away initially in the population regardless of the number
of people, who were initially infected. We verified that this conclusion is true in our
fractional model (6).

Where /8 :('Bllh +IB,\21Th +,338J
h

Where P =(S;,E;.V,, 1, T, R}, B")eR],

theny, z[ﬂllh +%Th +ﬂ38j
h

We expressed our fractional model as:
D/S=A, +dV, +oR, -, S, —(d + 14,) Sh»
“D/E, =v,.S, —(0+1,)E,
DV, =4S, — (¢ + 14, )V,
"D/l =0E, —(n+6,+ 1)1,
/T, =nl, —(a+6,+ u,)T,,
‘D/R, :aTh—(0'+,uh)Rh,
‘D/B=A; — 145B.

(6)

We obtained the following results at equilibrium point Eq. (24):
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l//hSh+(¢1+/uh)Sh:Ah+¢2Vh+GRh’ (6+:uh)Eh:l//hSh’
(¢2+:uh)vh =4S, (77+51+:uh)|h =0k, (0‘+52+,Uh)Th =nl,,

(o+u,)R, =aT,, H5B=Ag.

Theorem 1. Demonstrate that the system Model (1) is globally asymptotically stable at
disease free equilibrium, furthermore, at R, <1.

Proof
We construct the lyapunor function to prove the results,

L= Ahul +ABSh Eh (uz _ul) + (1_AB)(U3 _ul)
+6(u; —u,)+Ag(u, —u,)+n(u, —u,)
A, (ug—u,)+6(u, —u,)+o(u, —u,).

where u, U, u,u, us U and u, are positive constant
We take the derivative of the Lyapunov, we have:
R, <1

Let the positive constants be:

A
and N, >—"then we have
Hy

'=A, -U.N,
L =(-U.N, +A,)<0,

The system (5) is, therefore, globally asymptotically stable with respect to the disease-free
equilibrium and at R, <1.

4.9 Numerical Results of the Fractional-Order Model

To simulate the behavior of our typhoid fever model, we used a numerical technique called
the generalized fractional Adams-Bashforth-Moulton method, following the approach of
Amos et al. (2024). We ran these simulations using the parameter values listed in Table 1,

testing different fractional orders to see how they affected the outcome (7).
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4.10. Implementation of the Fractional Adams-Bashforth-Moulton Method

In this paper we use a fractional Adams-Bashforth-Moulton algorithm, as in the study of
Diethelm, Freed, and Baskonus et al. (2015), to estimate the solution of our fractional typhoid
fever model (6). The presentation of this model is modified after Amos et al. (2024) and it is
provided as follows:

"D/M (t)=N(t,m(t)), 0<t<y, ..(27)

Where M =(S;,E;, V,, I}, TR}, B")e R/ and Q(t,m(t)) is a real valued function that is

continous.

Eq. (27) can be consequently be denoted using the notion of fractional integral as follows:

M (t)=r:Z:Mé“)%Jrﬁj‘;(t—y)y_lR(y,m(y))dy .(28)

We apply the method described by Amos et al.(2024), let consider the step size
g =%, N e N with a grid that is uniform on [0,p]. Where t, =cr, ¢=0,11,..N. This

implies that, the fractional order model of Typhoid fever model presented in (6) can
approximately be expressed as:

(gy ){Ah +4V, +oRy _(ﬂllr? AN +ﬂ3BnJSr? _(¢1+:uh)8:}+

Sh(k+l) (t):ShO+F V42 NP

g’ ‘ Bilyy + BTy + 5B
m;dy’k+l{Ah+¢2vhy+o-Rhy_( Y Nhy Y Shy—(¢l+,uh)8hy y

4 1"+ BT "+ B,B" )., .
Eh(k+l)(t):Eh0+r(3+2){(/31h ﬂlz\lh: s jsh_(9+yh)Eh}+

¥ k | T B
_9 dy,k+1{[ﬂ1 w* Fol + s sth—(ewh)Ehy},

T(r+2)43 Ny (29)

g}’

Vi (1) =Vo + r(y+2)

{¢1Sr? - (¢2 + Uy )th } +

9 < -
myz;dy, k +l{¢15hy (4, + 1, )Vhy}’
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V4
Ih(k+l)(t)= Iho"'%{eE: _(77+51+:Uh)|r?}+

[(y+2

7

k
Zdy k+1{ (n+51+yh)lhy},
y=0

4

—

g
h(k+1) (t) =Tho + 1_,(7/ N 2)
r

Kk
S > dyk+1{nl,, —(a+5,+u)T, ),
+2)5%

{nl,:‘ —(a+5, +yh)Th”}+

Y
Ry () = Rop + r(3+2) (T ~(o+ u, ) RO+
k
g’ Zdy, k +1{0¢Thy —(a+,uh)Rhy},

F(}/+2)
g7 k
dy,k +1{ A B
g kit
Where

1 & Sl + BT + 5B
Sh(k+1)(t)=sh0+ zfyk+1{ nt OV +O—Rhy_£ = lilhy St Shy—(¢l+,uh)5hy \
h

1 3 Pl + BTy, + 5B,
Eh(k+l)(t): F nykﬂ{( = lilhy 2 ] h—((9+,uh)Ehy},
)i

hy

1 k
Vh(kﬂ) (t) :VhO + Z fy,k+1 {¢18hy _(¢2 + Hy )Vhy} y
T(7)3
1 k
Ih(k+l)(t)_|h0+—zfy,k+1{9E (77+5 +,uh)l }
I 7) y=0

(30)
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We obtained the result below from (29) and (30).

dy,y= K™ =(k=y)(k+y)", y=0

y+l

(k—y+2)"+(k=y)" -2(k-y+1) ,1<y<k
1Ly=k+1
and
g}’
fyica =7[(k—y+1)7(k—y)7], 0<y<k.

5.0 Numerical Simulation
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Fig.2a: Simulation of the effect ¢ on

Vaccinated humans against Typhoid fever
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Fig.2b: Simulation of the effect of 77 on
infected humans with Typhoid fever
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Fig.2c: Simulation of the effect of 77 on
humans on Typhoid fever treatment
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Fig.2e: Simulation of the effect of ¢ on
cumulative new cases of Typhoid fever
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Fig.2d: Simulation of the effect of 77 on
Recovered humans from Typhoid fever
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Fig.2f: Simulation of the effect ¢ on
humans on Typhoid fever treatment
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(2a) illustrates the simulation of the outcome of vaccination rate (¢1) on vaccinated human

population against Typhoid fever. It is detected that, as the vaccination rate (¢1) increases,
the number of vaccinated human population against Typhoid fever increases. (2b) shows the
simulation of the outcome of treatment rate (77) on infected human population with Typhoid

fever. It is detected that, as the treatment rate (77) increases, the number of infected human
population with Typhoid fever decreases.

(2c) represents the simulation of the outcome of treatment rate (77) on human population on

Typhoid fever treatment. It is practical that, as the treatment rate (77) increases, the number
of humans with Typhoid fever treatment increases.

(2d) represents the simulation of the effect of treatment rate (77) on recovered human
population from Typhoid fever. It is practical that, as the treatment rate (77) increases, the
number of recovered human population from Typhoid fever increases.

(2e) shows the simulation of the outcome of vaccination rate (¢1) on cumulative new cases

of Typhoid fever. It is revealed that, as the vaccination rate (¢ ) increases, the cumulative
new cases of Typhoid fever decreases.
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(2f) denotes the simulation of the outcome of vaccination rate (¢1) on humans on Typhoid

fever treatment. It is observed that, as the vaccination rate (¢1) increases, the number of
humans on Typhoid fever treatment increases.

(29) shows the simulation of the effect of contact rate (ﬁl) on cumulative new cases of

typhoid fever. It is observed that, as the contact rate ( ,Bl) increases, the cumulative new cases
of typhoid fever increases.

(2h) represents the simulation of the effect of contact rate (/) on humans on treatment of

typhoid fever. It is observed that, as the contact rate ( ,Bl) increases, the number of humans on

treatment of typhoid fever increases.

5.1 Conclusions

In this study, we developed a detailed mathematical model using fractional calculus to
understand how vaccination and treatment influence the spread of typhoid fever. We used a
specific numerical technique, the fractional Adams—Bashforth—Moulton method, to simulate
the model's behavior. This method was key because it allowed us to capture the "memory"
and hereditary properties that are fundamental to how a real disease moves through a
population. The outcomes from our simulations provide a clear and compelling results. We
observed that increasing the vaccination rate directly shrinks the number of people who are
susceptible to the disease. This reduction effectively lowers the overall infection burden and
acts as a strong brake on further transmission. In a similar vein, increasing the treatment rate
proves to be highly effective. It speeds up the recovery of those already infected, which
shortens the period they are contagious and, as a result, leads to a noticeable decline in the
number of active cases. The powerful part is how these two actions work together. The
combination of vaccination and treatment creates a synergistic control mechanism. This dual
strategy doesn't just prevent new infections from taking root; it also actively mitigates the
spread from infections that already exist. In summary, our findings underscore that
integrating thorough vaccination campaigns with prompt and effective treatment strategies
offers a robust and reliable pathway toward reducing the prevalence of typhoid fever. Our
fractional modeling approach further confirms its value by capturing these complex
epidemiological patterns, ultimately offering valuable insights for designing more effective
and sustainable public health interventions against this disease.
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