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Abstract:  

We consider the epidemiological characteristics of Typhoid fever infection in this paper in the equation of a 

fractional-order mathematical model in Caputo derivative. The interventions that are employed in the model to 

control the disease include treatment and vaccination to investigate the impact of the controls on the dynamics 

of the disease. The existence and uniqueness of solutions under the frame of the fractional order and the stability 

of the endemic equilibrium point are defined and tested by the theory of Lyapunov functions. The model is 

numerically determined by using the fractional Adams-Bashforth-Moulton algorithm to point out the 

modification of the model parameters and the fractional orders of the model parameters into the influence of 

each of the above parameters on the disease progression. It has been demonstrated by the use of simulation that 

increased treatment and vaccination of the disease reduces the prevalence of Typhoid fever, and indicates the 

high degree of flexibility and realism of the fractional-order models compared to the classical integer order 

equations. The significance of fractional modeling in the description of the interactions between the effects of 

memory and nonlocal interaction between the biological systems is identified in the paper, and this improves the 

comprehension and management of infectious diseases. The model however presupposes that the population is 

homogeneous mixed and hypothetical values of the parameters therefore inhibits empirical validation. In order 

to render the model more predictive and applicable in practice in the development of effective control strategies 

on Typhoid fever, future investigations should be able to incorporate the spatial heterogeneity, stochastic effects. 
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1.0 Introduction 

Typhoid fever, a serious illness caused by Salmonella Typhi, remains a major global health 

threat, especially in developing regions. Poor hygiene allows the bacteria to spread through 

contaminated food and water, leading to millions of infections and hundreds of thousands of 

deaths each year. The impact is starkly different from one community to another. For 

instance, while the Mekong Delta in Vietnam sees 198 cases per 100,000 people, Delhi, 

India, experiences a much higher rate of 980 per 100,000. History shows that improving basic 

living standards like access to clean water and sanitation is one of the most effective ways to 

reduce transmission. To fully combat this disease, we need a worldwide research effort that 

examines the problem from every angle, from the microscopic interaction between the 

pathogen and its host to the larger social, economic, and environmental factors that allow it to 

thrive. 

 

Mathematical modeling has become a cornerstone of modern epidemiology, offering a way to 

simulate how diseases spread and to test the potential impact of interventions like vaccines. 

By translating biological processes into equations, these models help scientists pinpoint the 

most critical factors that drive an outbreak. A common and powerful approach uses systems 

of ordinary differential equations (ODEs). When built with the right assumptions and 

parameters, these equations can effectively represent the complex dynamics of disease 

transmission. For example, Fraser and colleagues (2007) used such a model to 

comprehensively assess how vaccination programs can alter the spread of typhoid fever. 

 

To tackle public health crises like typhoid fever, scientists often turn to mathematical models. 

These models, built using differential equations, help us understand the core biological 

mechanisms that drive how a disease spreads. This entire field, known as mathematical 

epidemiology, has produced numerous studies on typhoid transmission, with foundational 

work from researchers like Ashcroft (1964) and Fraser et al. (2007), and continued by many 

others. 

 

While traditional models are useful, fractional differential equations offer a more powerful 

way to simulate complex biological systems like disease spread. Their key advantage is a 

"memory effect," which allows the model to incorporate the past history of the disease such 

as previous infections and treatments into its current state. 

 

In this paper, we use this advanced approach to model the transmission of typhoid fever, 

specifically including the effects of treatment and vaccination campaigns. By simulating 

different intervention scenarios, we can identify the most effective strategies to reduce the 

disease's prevalence. This method provides a more realistic picture, which is crucial for 

tackling persistent challenges like drug resistance, re-infection, and limited healthcare 

resources. 

 

Fractional calculus is a powerful branch of mathematics that has evolved significantly over 

time. As highlighted by Atokolo et al. (2022), its true strength lies in modeling complex, real-

world systems. 

 

Unlike simpler "classical" models that only capture a snapshot in time, fractional-order 

models have a "memory." This means they can account for how past events influence the 

present, providing a more complete and realistic picture of a system's overall behavior.  
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This is especially valuable in understanding infectious diseases like typhoid fever. By more 

accurately depicting how the disease spreads over time, these models offer a stronger 

foundation for developing effective control strategies. 

 

Think of modeling a disease like trying to understand a story. Traditional mathematical tools, 

known as Caputo and Riemann-Liouville derivatives, have been the go-to methods for years 

to write these "biological stories." More recently, scientists have started using newer, more 

advanced tools like the Mittag-Leffler and Atangana-Baleanu operators, which can often tell 

a smoother and more realistic results. 

 

Recent years have seen a significant shift in mathematical epidemiology towards using 

fractional-order models to understand and combat infectious diseases. Unlike traditional 

models, these sophisticated tools can incorporate the "memory" of a system, leading to more 

realistic simulations of complex disease dynamics. 

 

This approach has been successfully applied across a wide spectrum of public health threats. 

The work of Atokolo et al. (2022) on the Zika virus and Atokolo et al. (2023) on Lassa fever 

demonstrated how fractional-order models, solved using methods like the Laplace Adomian 

Decomposition Method (LADM), are effective for evaluating control strategies. 

Similarly, Yunus et al. (2023) found that a fractional COVID-19 model for Nigeria showed a 

better predicted recovery rate when vaccination and treatment were included, outperforming 

classic integer-order models. The flexibility of these models is further highlighted by their 

application to diverse pathogens. Omede et al. (2024) used a Caputo derivative-based model 

for soil-transmitted helminths, while Amos et al. (2024) and James et al. (2024) focused on 

Hepatitis C and HIV/AIDS, respectively. These studies, often employing the Adams-

Bashforth-Moulton method, consistently found that fractional models were more adaptable 

and better at showing how reduced contact rates and effective treatment can curb 

transmission. This finding was reinforced by Abah et al. (2024), who also used the Adams-

Bashforth-Moulton method to capture the nuanced impact of public health interventions. 

 

Finally, the power of fractional calculus extends to modeling complex co-infections. Ahmed 

et al. (2021) developed an ABC-fractional order model to control the co-epidemic dynamics 

of HIV and COVID-19, and the comprehensive review by Smith et al. (2023) synthesized the 

latest modeling approaches for Hepatitis C and COVID-19 co-infections, identifying key 

trends and future research directions. 

 

Fractional-order models are gaining popularity because they offer a more adaptable and 

realistic way to model complex systems. Their key strength lies in capturing "non-local" and 

"memory" effects meaning they can account for how past conditions and distant interactions 

influence the present, something traditional models often miss. 

 

This powerful ability to handle real-world complexity has inspired researchers to apply 

fractional calculus to increasingly challenging mathematical problems. For instance, building 

on foundational work like that of Ali et al. (2017), who pioneered stability analysis for 

fractional boundary value problems, others like Ullah et al. (2024) have developed innovative 

methods. Ullah's team, for example, combined Laplace transforms and decomposition to 

solve complex fuzzy integral equations, pushing the boundaries of dynamic systems theory. 
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The objectives that this paper is expected to accomplish are as follows: 

 The proposed fractional-order model must have existence and uniqueness of 

solutions. 

 Use Lyapunov function to perform a stability analysis of the endemic equilibrium 

point. 

 Numerically computing solutions using the fractional Adams-Bashforth-Moulton 

method. 

 Carry out numerical simulation so that the model behavior can be studied. 

 

Our review of existing research on typhoid fever models revealed a gap: no previous study 

has used the Adams-Bashforth-Moulton method within a fractional calculus framework to 

simulate and analyze the typhoid fever transmission and control. 

 

This paper is organized to address this gap. In Section 2, we present the mathematical model. 

Section 3 provides the analytical solutions, followed by the numerical results in Section 4. 

Finally, Section 5 offers a conclusion and discussion of our findings. 

 

1.1Preliminary 

This section covers the basics of fractional calculus. We will use the right and left Caputo 

fractional derivatives, following the work of Milici et al. (2018) and Bonyah et al. (2020). 

We'll also show how this powerful math is used to solve real-world problems in fields like 

physics, engineering, and biology. 

Definition 1: Let  Rf   then the left and right Caputo fractional derivative of the 

function  is given by:  

     0
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D f t t D f t
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Definition 2: The generalized Mittag-Leffler function  ,E x   for Rx  is given by   

 ,

0 ( )

n

n

x
E x

n
 

 






 

 , , 0                                                                                        (2) 

which can also be represented as  

f
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Proposition 1.1 

Let     RCRf  

and , 1 ,R n n      

therefore, the conditions given below holds: 

1.    
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3.1 Model Formulation 

In modeling the dynamics, the population is divided into seven groups: Susceptible human 

population  hS , Exposed human population  hE
,
 Vaccinated human population  hV , 

infected human population  hI , humans on typhoid fever treatment   hT  , Recovered human 

population  hR
  
and bacteria population. 

 

The susceptible humans are recruited at the rate of h , while the susceptible bacteria 

population are recruited at the rate of B , Contact rate between the susceptible humans and 

infected humans population with typhoid fever, Contact rate between the susceptible  humans 

and human population on typhoid fever treatment,  Contact rate between the susceptible  

humans and bacteria population are 1 2 3, and    respectively. Natural death rate of human 

population and bacteria population are h and B respectively. Disease induced death rate of 

typhoid fever infected humans, Disease induced death rate of humans on typhoid fever 

treatment are 1 2and  respectively. typhoid fever re-infection rate of recovered human 

population , Vaccination rate of susceptible human population against typhoid fever 1 , 

Waning rate vaccine 2 ,
 Progression rate from Exposed human population to typhoid fever 

infected human population ,
 
Treatment rate of typhoid fever infected human population ,  

Recovery rate due to treatment of typhoid fever .  

3.2 Model Assumptions 

1. We assume an imperfect vaccine in the human population 

2. We assume exogenous re-infection in human population 

3. We assume natural death in the population 
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4. We assume disease induced death in the population. 

3.3 Model Flow Chart 

 

 

3.4 Model Equations 
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Fig.1: Typhoid fever model flow Diagram  
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3.5 Model Variables and Parameters Descriptions 

Variables Descriptions 

hS  Susceptible human population to Typhoid fever 

hE  Exposed human population to Typhoid fever 

hV  Vaccinated human population against Typhoid fever 

hI  Infected human population with Typhoid fever 

hT  Human population on Typhoid fever treatment 

hR  Recovered human population from Typhoid fever 

B  Bacteria population  

Parameters Descriptions 

h  Recruitment rate of human population 

B  Recruitment rate of the bacteria population 

1  Vaccination rate of human population 

1   The frequency of contact between healthy individuals and people 

infected with typhoid. 

 

2   The frequency of contact between healthy individuals and people 

on typhoid fever treatment. 

 

2  Waning rate of vaccine in the human population 

h  Natural death rate of human population 

V  Natural death rate of Bacteria population 

  Progression rate from Exposed human population to infected human 

population 

  Treatment rate of infected human population 

  Recovery due to treatment rate of human population 

  Rate at which recovered humans become susceptible again 

1  Disease induced death rate of infected humans with typhoid fever 

2  Disease induced death rate of humans on typhoid fever treatment 

 

4.0 Integer order Model Equation 

 2 1 ,h
h h h h h h h

dS
V R S S

dt
            

 h
h h h h

dE
S E

dt
    

                                                                                       (5) 
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 1 2
h

h h h

dV
S V

dt
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dI
E I

dt
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 2 ,h
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dT
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dt
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dt
      

.B B

dB
B

dt
  

 

4.1 Fractional-order Mathematical Model  

To developa more adaptable model of typhoid fever, we have reframed the original integer-

order model (Eq. 5) using a Caputo fractional derivative. This key change allows the model 

to capture a broader spectrum of potential outbreak scenarios, offering a significant 

improvement in realism over the classical approach. 

The fractional Typhoid fever method is therefore presented as follows; 

 2 1 ,c

t h h h h h h hD S V R S S             

 c

t h h h h hD E S E     
                                                                    (6) 

 1 2

c

t h h h hD V S V     
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t h h h hD I E I       
 

 2 ,c

t h h h hD T I T         

  ,c

t h h h hD R T R       

.c

t B BD B B     

Where  1 1 hL     2,L h    3 2,L h    4 1,L h      5 2,L h    

 6,L .h  
7 .BL 

                                                                                          (7)
 

Subject to the positive initial conditions 

             0 0 0 0 0 0 00 , 0 , 0 , I 0 , 0 ,R 0 , 0 .h h h h h h h h h h h hS S E E V V I T T R B B      
     

(8) 

4.2 Positivity of Model Equation 

       We considered the non-negativity of the initial values 
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 lim . ,h
h

h

Sup N t





 

Secondly, If  0lim . ,h
h

h

Sup N t



 then our model feasible domain is given by:  
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h h h h h h h h h h h h
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  , so that 

7 ,T R    

hence    is positively invariant. 

If  0 0 0 0 0 0 0,E ,V , I ,T ,R ,h h h h h hS B  are  non-negative, then the solution of model (6) will be 

non-negative for 𝑡> 0. From Eq. (6), picking the first equation, we have that: 

 2 1 ,c

t h h h h h h hD S V R S S             

 1 2 ,c

t h h h h h h hD S S S V R           
 

2 0,h h hV R    
 Then, 

 1 0c

t h h h hD S S S      
 

Applying the Laplace transform, we have: 

 1 0c

t h h h hL D S L S S             
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
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By taking the inverse Laplace transform, we obtained ; 

    ,1 1 0S .h r h h hS t E t         

Now since the term on the right-hand side of Eq. (9) is positive, we conclude that 0S   for

0t  . In similar way, we also have that  0,E 0,V 0, I 0,T 0,R 0, 0 ,h h h h h hS B        

that is positives; therefore, the solution will remain in 7R  for all  0t   with positive initial 

conditions. 

4.3 Boundedness of fractional Model Equation 

The total population of individuals from our model is given by; 

             E V I T R .h h h h h h hN t S t t t t t t       
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So from our fractional model (6), we now obtain:  

             E V I T R .c c c c c c c

t h t h t h t h t h t h t hD N t D S t D t D t D t D t D t           
 

 ( )c

t h h h hD N t N t   
                                                              (10) 

We the take the Laplace transformation of (10) to get: 

 ( )c

t h h h hL D N t L N t          

 1(s) (0) ,h
h h h h h h

h

S N S N N s  


 
  

 

   

1

(s) (0)h h
h h

h h h h

S
N N

S S S



  

 
 

 
                                                (11) 

We take the inverse Laplace transform of Eq. (11), we obtained: 

   ,1 ,r 1(t) (0)h r h h h r hN E t N E t      
                                  (12) 

At t  , the limit of Eq. (12) becomes 

 lim .h
h

t
h

SupN t





 

This means that, if 0 .h
h

h

N



  then .h

h

h

N



  which implies that,  hN t  is bounded. 

We now conclude that, this region h   , is well posed and equally feasible 

epidemiologically. 

4.4 Existence and Uniqueness of our Model Equation 

Let the real non-negative be P, we consider  0,P .Q   

The set of all continuous function that is defined on M is represented by  0

eN Q  with norm 

as; 

  , t Q .X Sup X t   

Considering model (6) with initial conditions presented in (8) which can be denoted as an 

initial value problem (IVP) in (13). 

    , ,0 ,c

tD t Z t X t t P       

  00 .X X  
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Where                 ,E ,V , I ,T ,R ,h h h h h hY t S t t t t t t B t represents the classes and Z be 

a continuous function defined as follows: 

  

  
  
  
  
  
  
  

 

 

 

 

 

 

1 2 3
2 1

1

2
1 2 3

3

4
1 2

5 1

26

7

,

, E

, V

, , I

,

, R

,

h h
h h h h h h

h
h

h
h h

h h h
h

h

h
h h h

h h h h

h h hh

h h

I T B
V R S SZ t S t

N

Z t t
I T B

S EZ t t N

Z t X t Z t t S V

Z t T t E I

I TZ t t

TZ t B t

  
   

  
 

  

   

   

  

  
       

  
 

      
   
     
    
 

   
    
 

...(14)

h

B B

R

B

 
 
 
 
 
 
 
 
 
 
 
 
 
     

Using proposition (2.1), we have that,  

   1 2 3
0 2 1 ,h h

h h t h h h h h h

h

I T B
S t S I V R S S

N

   
   

   
         

     

   1 2 3
0 ,h h

h h t h h h

h

I T B
E t E I S E

N

   
 

   
     

     

   0 1 2 ,h h t h h hV t V I S V        
 

   0 1 ,h h t h h hI t I I E I          
                                (15) 

   0 2 ,h h t h h hT t T I I T          
 

   0 ,h h t h h hR t R I T R          

   0 .t B BB t B I B    
 

We obtain the Picard iteration of (15) as follows: 

 
 

      1

0 1 10

1
, d ,

t

hn h h n
S t S t Z S


   






  

   

 
 

      1

0 2 10

1
,E d ,

t

hn h h n
E t E t Z


   






  

   

 
 

      1

0 3 10

1
,V d ,

t

hn h h n
V t V t Z


   






  

   

 
 

      1

0 4 10

1
, I d ,

t

hn h h n
I t I t Z


   






  

                                       (16) 

 
 

      1

0 5 10

1
,T d ,

t

hn h h n
T t T t Z


   






  

   
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 
 

      1

0 6 10

1
,R d ,

t

hn h h n
R t R t Z


   






  

   

 
 

      1

0 7 10

1
, d .

t

n n n
B t B t Z B


   






  

   

We transformed the initial value problem of Eq. (13) to obtain: 

   
 

    
1

0

1
0 , d .

t

X t X t Z X


   



  

 
         (17)

 

Lemma 1, The Lipchitz condition described from Eq. (14) is satisfied by vector   t,Z X t  

on a set   70, P R  with the Lipchitz constant given as; 

             * * *

1 2 3 1 2 1 2max , , ,, , , , .h h h h h h B                                

 

Proof. 

   1 1 1, ,h hZ t S Z t S
 

 

 

1 2 3
2 1

1 2 3
2 1 1

,

h h
h h h h h h

h

h h
h h h h h h

h

I T B
V R S S

N

I T B
V R S S

N

  
   

  
   

  
      

 


  
      

 

 

      * * *1 2 3
1 1 1 1 2 3 1 1 ,h h

h h h h h h h h h h h

h

I T B
S S S S S S S S

N

  
      

  
             

 

     * * *

1 1 1 1 2 3 1 1, , .h h h h hZ t S Z t S S S           
 

Similarly we obtained the following; 

     2 2 1 1,E ,E E E ,h h h h hZ t Z t     
 

     3 3 1 2 1,V ,V ,h h h h hZ t Z t V V    
 

     4 4 1 1 1, I , I ,h h h h hZ t Z t I I      
 

     5 5 1 2 1,T ,T ,h h h h hZ t Z t T T      
                      (18) 

     6 5 1 1,R ,R ,h h h h hZ t Z t R R    
 

     7 7 1 1, , .BZ t B Z t B B B  
 

Where we obtained:  

     1 2 1 2,X ,X X X ,Z t t Z t t   
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             * * *

1 2 3 1 2 1 2max , , ,, , , , .h h h h h h B                                

(19) 

Lemma 2. The initial value problem (6), (7) in Eq. (19) exists and will have a unique 

solution. 

   0X .ct A f
 

We use the  Picard-Lindelof  and fixed point theory to  consider the solution of  

    X X ,ht S t
 

We defined the  Picard operator expressed as S:  

   0 7 0 7: , , .c cS A f R A f R 
 

Therefore 

    
 

    
1

0

1
0 ,X d .

t

hS X t X t Z


   



  

   

which becomes:  

     1 2X Xh hS t S t
 

 
       

1

1 2
0

1
,X ,X d

t

t Z Z


     


   
     

 
       

1

1 2
0

1
,X ,X d .

t

t Z Z


     



  
   

 
 

1

1 2
0

X X .
t

t d


 



  
   

     
 1 2X X .

1
h h

h

S t S t
S




 

   

When  
1

1
hS






  , then the Picard operator gives a contradiction,  so Eq.(6) , (7) solution 

is unique. 

4.5 Disease Free Equilibrium Point 

It is a state where there is no disease, this implies  

0,E 0,V 0, I 0,T 0,R 0, 0.h h h h h hS B        

The state is represented by  0 0 0 0 0 0 0

0 , ,V , ,T , ,h h h h h hE S E I R B .  
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 
 
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0 0 0 20 0 0 1
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   

 

 
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4.6 Basic Reproduction Number 

In epidemiology, the basic reproduction number was identified as a major measure of 

potential in an outbreak. In the case of Typhoid fever, it is the mean number of secondary 

cases produced by one infected individual within a fully susceptible community. In order to 

calculate this value to use in our model, we used the already proven next-generation operator 

technique on the system of equations. 

Hence, it follows that: 

  1

0R FV  where  is the dominant Eigen value of 1FV   

To find the basic reproduction number 0R for the Typhoid fever model, we use the formula:

1

0 ( )FV R where  denotes the spectral radius, F is the matrix of new infections, and

V is the matrix of transitions. 

Given: 
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This is the largest Eigen value. 

4.7 Endemic Equilibrium Point of Typhoid fever 

Endemic equilibrium point refers to the point of a limited disease within the population in 

which the disease stays constant. 

At endemic equilibrium point 0,E 0,V 0, I 0,T 0,R 0, 0.h h h h h hS B        
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Substituting into the force of infection 
 1 2 3h h

h

h

I T B

N

  


 
 we have: 

1 2 0hQ Q  
.
 

 1 3 7 3 6 7 3 5 6 7 3 4 5 6 7 ,h h h hQ L L L L L L L L L L L L L L           

 

 
2 2 2 5 1 5 1 2

2 2 3 4 5 6 7

2 4 5 2 1

1 ,
h h

h

h

L L
Q L L L L L L

L L L

l        

  

   
      

  

 2 2 3 4 5 6 7 0 .1hQ L L L L L L R   

This implies that the above model has a stable endemic equilibrium point if 0 0.R   

4.8 Global Asymptomatic Stability of the Disease-Free Equilibrium Point 

The global stability of the equilibrium point was studied using the direct Lyapunov method. 

The global stability of the endemic equilibrium (a situation, which occurs when 0 1R    ) 

implies that the disease will not go away initially in the population regardless of the number 

of people, who were initially infected. We verified that this conclusion is true in our 

fractional model (6). 

Where 1 2 3h h
h

h

I T B

N

  


  
  
 

 

Where  * * * * * * * 7,E , , ,T ,,R ,h h h h h hP S V I B R  , 

then 1 2 3h h
h

h

I T B

N

  


  
  
 

 
 

We expressed our fractional model as: 

 2 1 ,c

t h h h h h h hD S V R S S             

 c

t h h h h hD E S E     
                                                                    (6) 

 1 2

c

t h h h hD V S V     
 

 1 ,c

t h h h hD I E I       
 

 2 ,c

t h h h hD T I T         

  ,c

t h h h hD R T R       

.c

t B BD B B     

We obtained the following results at equilibrium point Eq. (24): 
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 1 2 ,h h h h h h hS S V R            ,h h h hE S   
                                                               

 2 1 ,h h hV S     1 ,h h hI E       2 ,h h hT I     
 

  ,h h hR T   
.B BB  
 

Theorem 1.  Demonstrate that the system Model (1) is globally asymptotically stable at 

disease free equilibrium, furthermore, at 0 1.R   

 

       Proof 

We construct the lyapunor function to prove the results, 
1

1 2 1 3 1

3 2 4 2 4 3

5 4 6 4 7 4

( ) (1 )( )

( ) ( ) ( )

( ) ( ) ( ).

h B h h B

B

r

L u S E u u u u

u u u u u u

u u u u u u

 

 

      

     

     
 

1, 2, 3, 4, 5, 6 7where u u u u u u u  and are positive constant  

We take the derivative of the Lyapunov, we have: 

0 1.R   

Let the positive constants be:

 
1, 2, 3, 4, 5, 6 7u 1

 

u u u u u u      
 

,h
h

h

and N



 then we have 

1

h h hL U N    

 1 0,h h hL U N     

The system (5) is, therefore, globally asymptotically stable with respect to the disease-free 

equilibrium and at 0 1.R    

4.9 Numerical Results of the Fractional-Order Model 

To simulate the behavior of our typhoid fever model, we used a numerical technique called 

the generalized fractional Adams-Bashforth-Moulton method, following the approach of 

Amos et al. (2024). We ran these simulations using the parameter values listed in Table 1, 

testing different fractional orders to see how they affected the outcome   . 
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4.10. Implementation of the Fractional Adams-Bashforth-Moulton Method 

In this paper we use a fractional Adams-Bashforth-Moulton algorithm, as in the study of 

Diethelm, Freed, and Baskonus et al. (2015), to estimate the solution of our fractional typhoid 

fever model (6). The presentation of this model is modified after Amos et al. (2024) and it is 

provided as follows: 

      ,m , 0 , ... 27c

tD M t N t t t     

   
 

 00 , 1,0, ...,m,m .
nn

M M n     

Where  * * * * * * * 7,E ,V , I ,T ,R ,h h h h h hM S B R   and   ,Q t m t  is a real valued function that is 

continous. 

Eq. (27) can be consequently be denoted using the notion of fractional integral as follows: 

   

 
      

1 1

0
0

0

1
, ... 28

!

nm tn

n

t
M t M t y R y m y dy

n





 



  


   

We apply  the method described by Amos et al.(2024), let consider  the step size 

,g N
N


   with a grid that is uniform on   0, .  Where , 0,1,1,... .ct cr c N   This 

implies that, the fractional order model of Typhoid fever model presented in (6) can  

approximately be expressed as:  

     
 

 
 

1 2 3
0 2 11

1 2 3

2 1

0

2

, 1 ,
2

n n n
n n n nh h

h h h h h h hh k n

h

k
hy hy y

h hy hy hy h hy

y h

I T Bg
S t S V R S S

N

I T Bg
dy k V R S S

N





  
   



  
   







    
          

     

    
        

     


 

     
 
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01
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y hy
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E t E S E
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  
 







    
      

     

    
          


           (29) 

     
  

 
  

0 1 21

1 2

0

2

, 1 ,
2

n n

h h hh k

k

hy h hy

y

g
V t V S V

g
dy k S V





  


  






    
 

  
 


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     
  

 
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     
 0 , 11

0

1
.

k

y k B B yk
y

B t B f B



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   


  

We obtained the result below from (29) and (30). 

  1

1, , 0Kdy K k k y
  
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 

 

5.0 Numerical Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2a: Simulation of the effect  on 

Vaccinated humans against Typhoid fever 

Fig.2b: Simulation of the effect of  on 

infected humans with Typhoid fever 
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Fig.2c: Simulation of the effect of  on 

humans on Typhoid fever treatment 

Fig.2d: Simulation of  the effect of  on 

Recovered humans from Typhoid fever 

 

  

Fig.2e: Simulation of the effect of on 

cumulative new cases of Typhoid fever  

Fig.2f: Simulation of the effect  on 

humans on Typhoid fever treatment 
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 (2a) illustrates the simulation of the outcome of vaccination rate  1  on vaccinated human 

population against Typhoid fever. It is detected that, as the vaccination rate  1  increases, 

the number of vaccinated human population against Typhoid fever increases. (2b) shows the 

simulation of the outcome of treatment rate    on infected human population with Typhoid 

fever. It is detected that, as the treatment rate    increases, the number of infected human 

population with Typhoid fever decreases.  

(2c) represents the simulation of the outcome of treatment rate    on human population on 

Typhoid fever treatment. It is practical that, as the treatment rate    increases, the number 

of humans with Typhoid fever treatment increases.  

(2d) represents the simulation of the effect of treatment rate    on recovered human 

population from Typhoid fever. It is practical that, as the treatment rate    increases, the 

number of recovered human population from Typhoid fever increases.  

(2e) shows the simulation of the outcome of vaccination rate  1  on cumulative new cases 

of Typhoid fever. It is revealed that, as the vaccination rate  1  increases, the cumulative 

new cases of Typhoid fever decreases.  

  

Fig.2h: Simulation of the effect of on cumulative 

new cases of Typhoid fever  

 

Fig.2h: Simulation of the effect of on humans 

on Typhoid fever treatment 
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(2f) denotes the simulation of the outcome of vaccination rate  1  on humans on Typhoid 

fever treatment. It is observed that, as the vaccination rate  1  increases, the number of 

humans on Typhoid fever treatment increases.  

(2g) shows the simulation of the effect of contact rate  1  on cumulative new cases of 

typhoid fever. It is observed that, as the contact rate  1  increases, the cumulative new cases 

of typhoid fever increases.  

(2h) represents the simulation of the effect of contact rate  1  on humans on treatment  of 

typhoid fever. It is observed that, as the contact rate  1  increases, the number of humans on 

treatment of typhoid fever increases.  

5.1 Conclusions 

In this study, we developed a detailed mathematical model using fractional calculus to 

understand how vaccination and treatment influence the spread of typhoid fever. We used a 

specific numerical technique, the fractional Adams–Bashforth–Moulton method, to simulate 

the model's behavior. This method was key because it allowed us to capture the "memory" 

and hereditary properties that are fundamental to how a real disease moves through a 

population. The outcomes from our simulations provide a clear and compelling results. We 

observed that increasing the vaccination rate directly shrinks the number of people who are 

susceptible to the disease. This reduction effectively lowers the overall infection burden and 

acts as a strong brake on further transmission. In a similar vein, increasing the treatment rate 

proves to be highly effective. It speeds up the recovery of those already infected, which 

shortens the period they are contagious and, as a result, leads to a noticeable decline in the 

number of active cases. The powerful part is how these two actions work together. The 

combination of vaccination and treatment creates a synergistic control mechanism. This dual 

strategy doesn't just prevent new infections from taking root; it also actively mitigates the 

spread from infections that already exist. In summary, our findings underscore that 

integrating thorough vaccination campaigns with prompt and effective treatment strategies 

offers a robust and reliable pathway toward reducing the prevalence of typhoid fever. Our 

fractional modeling approach further confirms its value by capturing these complex 

epidemiological patterns, ultimately offering valuable insights for designing more effective 

and sustainable public health interventions against this disease. 
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