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ABSTRACT:  

In this paper, some new conditions on the existence, stability and boundedness of periodic 

solutions for certain nonlinear boundary value problems were investigated. Construction of a 

complete Lyapunov function for higher order differential equations were not all that easy and 

therefore a new method for investigating and proving the existence, stability and 

boundedness was considered. The method of Leray-Schauder fixed point theorem provided 

existence of periodic solutions which depended on the availability of suitable boundedness 

results. In some cases, boundedness results were very difficult to establish due to the nature 

of the Lyapunov function involved and the method of the integrated equation was used as a 

mode for estimating apriori bounds for the fourth order differential equation. The aim of 

using integrated equation was to amelioriate the technical problems arising from the 

construction of Lyapunov function for higher order differential equations which was 

considered to be cumbersome and complex. However, our results generalize and complement 

some existing results in literature. 
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1. Introduction 
Consider the fourth order nonlinear differential equation of the form 

𝑥4 + 𝑎1𝑥 + 𝑎2𝑥̈ + 𝑎3𝑥̇ + ℎ(𝑥) = 𝑝(𝑡)     (1.1) 

which had its origin following investigations Ezeilo (1963) did on the third order 

differential equation. Harrow (1967) extended the ideas to the behavior of the system 

of a fourth order system 

 𝑥̇ = 𝑦  

 𝑦̇ = 𝑧 

 𝑧̇ = 𝑢 

 𝑢̇ = −𝑎𝑢 − 𝑏𝑧 − 𝑐𝑦 − ℎ(𝑥) + 𝑝(𝑡)     (1.2) 

The existence of periodic solutions to more general form of (1.1) have been studied by 

Tejumola (1969), Ezeilo and Onyia (1983) and Ressig (1974). Recently on the non-

resonant oscillations for  some  fourth order differential equation. Ezeilo and Onyia 

(1984) considered the following    equation          

  𝑥4 + 𝑎1𝑥3 + 𝑎2𝑥̈ + ℎ(𝑥)𝑥̇ + 𝑎4𝑥 = 𝑝(𝑡)      (1.3) 

𝑥4 + 𝑎1𝑥3 + 𝑎2𝑥̈ + 𝑔(𝑥̇) + 𝑎4𝑥 = 𝑝(𝑡)                  (1.4) 

For a.e 𝑡 ∈ [0,2𝜋]  which is subjected to 2𝜋  boundary conditions on [0, 2𝜋]  where 

𝑎1, 𝑎2, 𝑎4  are constants and 𝑔: ℝ → ℝ  are continuous functions. 𝑝: ℝ → ℝ  is also 

continuous. Solutions here are caratheodory sense. 

Over the years, several theories have emerged on the methods of finding the existence 

of periodic solutions. For instance Mawhm  and Wand (1982) and Bockelman (2006) 

have used the degree    theory. On the use of lyapunov functions see Ezeilo (1962,1963, 

1966),Tejumola (1969), Ezeilo and Onyia (1984) and Ezeilo and Nkashama (1985). On 

the use of frequency domain approach see Afuwape (1981). Most recently, Eze et al 

(2013), Eze and Aja (2015), Eze et al (2017, 2018, 2019a, 2019b, 2019c, 2019d, 2021), 

Eze and Udaya (2020), Osu et al (2020), have used implicit function  theorem as well as 

the lyapunov method to prove the existence of periodic solutions. Guoshan and Piezhao 

(2018) and Bernstein and Bhat (1994) used lyapunov method while Kearfott (2008)  

used the interval  Newton-method. 

Motivated by the above results and ongoing research in this direction, the purpose of 

this paper is to prove existence and bounds of periodic solutions for certain nonlinear 

differential equation of the fourth order using Leray-Schauder fixed point technique and 

the integrated equation as the mode for estimating the apriori bounds for higher order 

differential equation. The aim of using the integrated equations is to tackle technical 

problems arising from the construction of lyapunov function using the method adopted 
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from Cartwright (1956). However, our results generalize and complement some 

existing results in literature. 

2. Preliminaries 

Theorem 2.1 Ezeilo (1999a). Let 𝑎1 ≠ 0 and 𝑎4 ≠ 0 and suppose that the function 𝐻(𝑥) 

defined by 𝐻(𝑥) = ∫ ℎ(𝑠)𝑑𝑠
𝑥

0
 satisfies 𝑚2 + 𝜃1(|𝑥|) < 𝑎−1𝑥−1𝐻(𝑥) < (𝑚 + 1)2 =

𝜃2(|𝑥|, |𝑥|) > 𝑟 where 𝑚 is an integer and 𝜃𝑖: [0, +∞] → ∞ (𝑖 = 1,2) are two functions 

such that |𝑥|𝜃𝑖(|𝑥|) → ∞ as |𝑥| → ∞ (𝑖 = 1,2). Then equation (1.3) with the boundary 

condition on [0,2𝜋] has at least solution for every 𝑝 ∈ 𝐿1[0,2𝜋] and for arbitrary 𝑎2.  

Theorem 2.2 Ezeilo (1999b) Let 𝑎1 ≠ 0 and 𝑎4 ≠ 0 and suppose that 𝑔 satisfies 𝑚2 +

𝜂1(|𝑦|) ≤ 𝑎−1𝑦−1𝑔(𝑥) ≤ (𝑚 + 1)2, |𝑥| > 𝑟  where 𝑚 > 0  is an integer. 𝜂𝑖: [0, ∞] →

+∞ (𝑖 = 1,2) are two functions such that |𝑦|𝜂𝑖(|𝑦|) → ∞ as |𝑦| → ∞ (𝑖 = 1,2). Then the 

2𝜋 − periodic boundary value problem (1.4) has at least one solution for every 𝑝 ∈

𝐿1[0,2𝜋] and for arbitrary 𝑎2. Ezeilo and Tejumola (2001) considered the fourth order 

differential equation 

𝑥(4) + 𝜑(𝑥) + 𝜑(𝑥̈) + 𝜑(𝑥̇) + 𝑓(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑝(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)  (1.5) 

in which 𝜑, 𝜃: ℝ → ℝ,  𝑓: ℝ4 → ℝ,  𝑝: [0,2𝜋] × ℝ4 → ℝ  are 𝐶0  and 𝜑: ℝ → ℝ  is 𝐶1  and 

assume that 𝑝 has a periodic 2𝜋 in 𝑡 uniformly with respect to other variables and that          

        |𝑝(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)| ≤ 𝐴∗ < ∞       (1.6) 

for some constants 𝐴∗ for all values of 𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4. Then the result follows. 

Theorem 2.3 Ezeilo and Tejumola (2001). Suppose further to the basic assumption in 

theorem 2.2 that there exist a constant 𝑎2 > 0 such that 

        |𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)| ≤ 𝑎2 for all 𝑥1, 𝑥2, 𝑥3, 𝑥4    (1.7) 

      𝜑′(𝑥) >
1

4
𝛼2

2
|𝑥|≤1

𝑖𝑛𝑓
        (1.8) 

max
𝑥2

2+𝑥2
2≤𝐴2

|𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)| ≤ 𝑘𝐴      (1.9) 

For arbitrary 𝑥1, 𝑥4. Then equation (1.5) subject to the boundary conditions  

       𝐷𝑟𝑥(0) = 𝐷𝑟𝑥(2𝜋)  𝑟 = 0,1,2,3 , 𝐷 =
𝑑 

𝑑𝑡
    (1.10) 

has at least one solution for arbitrary 𝜑 and 𝜃. 

Definition 2.3 A solution 𝑥(𝑡) of a differential equation 𝑥̇ = 𝑓(𝑡, 𝑥), 𝑡, 𝑥 ∈ ℝ is said to be 

apriori bounded if there are obvious causes for 𝑥(𝑡) to be bounded. These reasons 

emanate from the space ℝ𝑛  and any transformation 𝑇 defined on the space. Thus |𝑥|∞ ≤

𝐴0. Then 𝑥(𝑡) is apriori bounded. 
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Lemma 2.4 (Schaefer’s Lemma) Let 𝑇 be a compact transformation of a normed linear 

space 𝑆 into itself. Let 𝜆 ∈ (0,1) then either there is 𝑋 ∈ 𝑆 such that  

        𝑋 = 𝜆𝑇𝑋    (1.11) 

Or the set {𝑋/𝑋 ∈ 𝑆: 𝑋 = 𝜆1𝑇𝑋1 0 < 𝜆1 < 1} is unbounded. Clearly, in order to be able to 

conclude that (1.11) has a solution 𝑋 ∈ 𝑆 for each 𝜆 ∈ (0,1), it will be enough to verify 

the existence of a constant 𝐴0 (0 < 𝐴0 < ∞) independent of 𝜆 ∈ (0,1) such that for 

every 𝑋 ∈ 𝑆 satisfying (1.11), the relation ‖𝑥‖ ≤ 0 hold where ‖𝑥‖ denotes the norm of 

𝑋 ∈ 𝑆. 

Definition 2.5 (Integrated Equation). This is an equation obtained mainly from pre-

multiplication of a given differential equation by 𝑥, 𝑥̇, 𝑥̈ etc. as the case might be and 

thereafter integrating with respect to 𝑡 from 𝑡 = 0 to 𝑡 = 𝑇. The resulting equation is 

referred to as ‘integrated equation’. The equation is similar to a lyapunov function 

which is applicable in determining stability, instability, boundedness, ultimate 

boundedness and periodicity of solutions in ordinary differential equations. However, it 

is difficult to construct a suitable lyapunov function for higher order nonlinear 

differential equation. Even when such a lyapunov function is constructed, it might not 

be utilized in estimating ∫ 𝑥̈22𝜋

0
𝑑𝑥  or ∫ 𝑥̇22𝜋

0
𝑑𝑥 for a possible solution 𝑥(𝑡) of associated 

parameter differential equation. For instance, the method adopted by Cartwright 

(1956) being extended to a fourth order differential equation 

      𝑥(4) + 𝑎1𝑥 + 𝑎2𝑥̈ + 𝑎3𝑥̇ + 𝑎4𝑥 = 0      (1.12) 

and its nonlinear forms has a lot of difficulties which are shown below. The procedure is to 

transform the equation (1.12) into system form 

     𝑥̇ = 𝑦, 𝑦̇ = 𝑧, 𝑧̇ = 𝑤, 𝑤̇ = −𝑎1𝑤 − 𝑎2𝑧 − 𝑎3𝑦 − 𝑎4𝑥   (1.13) 

or writing compactly 

    𝑋̇ = 𝐴𝑋         (1.14) 

Where 𝐴 = [

0 1
0 0
0

−𝑎4

0
−𝑎3

0 0
1 0
0

−𝑎2

1
−𝑎1

], 𝑋 = [

𝑥
𝑦
𝑧
𝑤

]   (1.15) 

The method which is being discussed is based on the fact that the matrix 𝐴 defined in (1.15) has 

all its eigenvalues with negative real parts. Then from the general theory that correspond to any 

positive definite quadratic form 𝑢, there exist another positive quadratic form 𝑉 such that 

            𝑉̇ = −𝑢        (1.16)   

  

We choose the most general quadratic form of order two and pick the coefficients in the 

quadratic form to satisfy equation (1.16) along the solution paths of equation (1.13). Let 𝑉 be 

defined by  

15
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 2𝑉 = 𝛼1𝑥2 + 𝛼2𝑦2 + 𝛼3𝑧2 + 𝛼4𝑤2 + 2𝛼5𝑥𝑦 + 2𝛼6𝑤𝑧 + 2𝛼7𝑥𝑤 

        +2𝛼8𝑦𝑧 + 2𝛼9𝑦𝑤 + 2𝛼10𝑧𝑤       (1.17) 

At this stage, there are already too many coefficients to context with. Now 

 𝑉̇ = 𝛼1𝑥𝑦 + 𝛼2𝑦𝑧 + 𝛼3𝑧𝑤 − 𝑎1𝛼4𝑤2 − 𝑎2𝛼4𝑧𝑤 − 𝑎3𝛼4𝑦𝑤 − 𝑎4𝛼4𝑥𝑤 + 𝛼4𝑥𝑧  

 +𝛼5𝑦2 + 𝛼6𝑦𝑧 + 𝛼6𝑥𝑤 − 𝑎1𝛼7𝑥𝑤 − 𝑎2𝛼7𝑥𝑧 − 𝑎3𝛼7𝑥𝑦 − 𝑎4𝛼7𝑥2 + 𝑎8𝑧2 + 𝛼8𝑦𝑤 + 𝛼9𝑧𝑤 

 −𝑎1𝛼9𝑦𝑤 − 𝑎2𝛼9𝑦2 − 𝑎3𝛼9𝑦2 − 𝑎4𝛼9𝑧𝑤 + 𝛼10𝑤2 − 𝛼10𝑧𝑤 

 −𝑎2𝛼10𝑧2 − 𝑎3𝛼10𝑦𝑧 − 𝑎4𝛼10𝑥𝑧      (1.18) 

Equation (1.18) is very boring and cumbersome for consideration in terms of coefficients 

Table 1.1 showing terms and coefficients of (1.18) 

Terms Coefficients 

𝑥2 −𝑎4𝛼7 

𝑦2 𝛼5 − 𝑎3𝛼7 

𝑧2 𝛼8 − 𝑎3𝛼9 

𝑤2 𝛼10 − 𝑎1𝛼4 
𝑥𝑦 𝛼1 − 𝑎3𝛼7 − 𝑎4𝛼9 
𝑥𝑧 −𝑎4𝛼10 
𝑥𝑤 𝛼6 − 𝑎4𝛼4 − 𝑎1𝛼7 − 𝑎3𝛼10 
𝑦𝑧 𝛼2 + 𝛼6 + 𝛼7 − 𝑎2𝛼9 − 𝑎3𝛼10 
𝑦𝑤 𝛼8 − 𝑎3𝛼4 − 𝑎1𝛼9 
𝑧𝑤 𝑎3 − 𝑎2𝛼4 + 𝛼9 − 𝑎1𝛼10 

 

Equation (1.17) and (1.18) have given us an insight to the difficulties involved in the above 

method. Therefore to avoid these difficulties arising from the complexities in 𝑉̇ through the 

solution paths of the above table, we opt for the method of integration. 

Also, the nonlinear fourth order parameter 𝜆 −dependent equation (0 ≤ 𝜆 ≤ 1) 

   𝑥(4) + 𝜆𝜑(𝑥̇)𝑥 + ℎ𝜆(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ + 𝜆𝜃(𝑥̇) + 𝑓𝜆(𝑥) = 0    (1.19) 

Where ℎ𝜆(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ = (1 − 𝜆)𝛼2𝑥̈ + ℎ𝜆(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ and 𝑓𝜆(𝑥) = (1 − 𝜆)𝛼4𝑥 + 𝜆𝑓(𝑥) 

In system form equation (1.19) can be written as 

  𝑥̇ = 𝑦, 𝑦̇ = 𝑧, 𝑧̇ = 𝑤, 𝑤̇ = −𝜆𝜑𝑤 − ℎ𝜆𝑧 − 𝜆𝜃(𝑦) − 𝑓𝜆(𝑥)   (1.20) 

The main objective here is to construct an integrated equation for the system (1.20) through the 

constant coefficient fourth order differential equation of (1.12) or the equivalent fourth order 

system of (1.13). Multiplying (1.12) by 𝑥̈ and integrating with respect to 𝑡 from 𝑡 = 0 to 𝑡 = 𝑇, 

we have 

 [𝑢𝑧 +
1

2
𝑎1𝑥̈2 +

1

2
𝑎3𝑥̇2 + 𝑎4𝑥𝑥̇]0

𝑇 − ∫ 𝑥2𝑑𝑠
𝑇

0
+ ∫ 𝑎2

𝑇

0
𝑥̈2𝑑𝑠 − ∫ 𝑎4𝑥̇2𝑑𝑠

𝑇

0
= 0 (1.21) 
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Now replacing [𝑢𝑧 +
1

2
𝑎1𝑥̈2 +

1

2
𝑎3𝑥̇2 + 𝑎4𝑥𝑥̇]0

𝑇 by 𝑉(𝑥, 𝑦, 𝑧, 𝑤) in (1.21) where (𝑥, 𝑦, 𝑧, 𝑤) are all 

functios of 𝑡, we have  

   𝑉 − ∫ 𝑥2𝑑𝑠
𝑇

0
+ ∫ 𝑎2

𝑇

0
𝑥̈2𝑑𝑠 − ∫ 𝑎4𝑥̇2𝑑𝑠

𝑇

0
= 0     (1.22) 

Which implies that  

      𝑉 = ∫ 𝑥2𝑑𝑠
𝑇

0
− ∫ 𝑎2

𝑇

0
𝑥̈2𝑑𝑠 + ∫ 𝑎4𝑥̇2𝑑𝑠

𝑇

0
     (1.23) 

But from (1.24) 

     𝑉̇ = 𝑥2 − 𝑎2𝑥̈2 + 𝑎4𝑥̇2       (1.24) 

If we put 𝑢 = −𝑥2 + 𝑎2𝑥̈2 − 𝑎4𝑥̇2 in (1.24) then (1.24) becomes (1.21) which is a confirmation 

that the present paper is in line with the theory on the construction of lyapunov function. 

Therefore our 𝑉 for the system (1.13) could be given by  

    𝑉 = 𝑢𝑧 +
1

2
𝑎1𝑥̈2 +

1

2
𝑎3𝑥̇2 + 𝑎4𝑥𝑥̇      (1.25) 

Next, we find a 𝑉 as corresponding to a 𝑉 in (1.25) corresponding to the nonlinear system 

(1.20). Without the loss of generality, the comparison equations (1.20) and (1.13) indicate that 

(1.20) is equivalent to (1.13) if  

         

𝜆𝜑(𝑧)is replaced by 𝑎1

𝜆𝜃(𝑦)is replaced by 𝑎2𝑦
𝑓𝜆 is replaced by 𝑎4𝑥

}       (1.26) 

We observed that 𝑎2 does not appear in 𝑉 as given in (1.25) so the correlation (1.26) suggests 

that our 𝑉 for the nonlinear system (1.20) could be given by  

 𝑉 = 𝑣(𝑥, 𝑦, 𝑧, 𝑤) = 𝜆 ∫ 𝑠𝜑(𝑠)𝑑𝑠
𝑥

0
+ 𝑢𝑧 + 𝑦𝑓𝜆(𝑥) + 𝜆 ∫ 𝜃(𝑠)𝑑𝑠

𝑦

0
  (1.27) 

On the applicability of 𝑉 so far constructed for nonlinear fourth order differential equation, we 

note that the equation have been in use from the time of Cartwright (1956) for second order 

differential equations. It continued in the papers by Ressig (1972), Voitovich (2011) and Tiryaki 

.and Tunc (1995). However, the    fact remain   that  there is no available literature on how thses 

functions could be obtained. In this paper, there is an   improvement on the integrated 

equations as it concerns the application of Leray-Schauder fixed point technique to fourth order 

differential equation. 

4. Results 

Consider the differential equation 

 𝑥(4) + 𝑓(𝑥) + 𝑔(𝑥̈) + ℎ(𝑥̇) + 𝑎4𝑥 = 𝑝(𝑡, 𝑥̇, 𝑥̈, 𝑥)    (1.28) 

With boundary conditions 

𝐷(𝑟)𝑥(0) = 𝐷(𝑟)𝑥(2𝜋);  𝑟 = 0,1,2,3. 𝐷 =
𝑑

𝑑𝑡
      (1.29) 
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Where 𝑎4 is a constant greater than zero and 𝑓 = 𝑓(𝑥̈), 𝑔 = 𝑔(𝑥̇), ℎ = ℎ(𝑥̇) and 𝑝 is continuous 

functions depending on their arguments with 𝑝 being 2𝜋 periodic in 𝑡. Equation (1.28) is a more 

general form of equation (1.1) where 𝑏1, 𝑏2, 𝑏3 are all not constants. It could also be seen as one 

of the configuration of the equation 

  𝑥(4) + 𝑎1𝑥 + 𝑎2𝑥̈ + 𝑎3𝑥̇ + 𝑎4𝑥 = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥̈, 𝑥)    (1.30) 

in which 𝑎1, 𝑎2 and 𝑎3 are not constants. Our consideration will be based on auxiliary equation  

   𝑟4 + 𝑎1𝑟3 + 𝑎2𝑟2 + 𝑎3𝑟 + 𝑎4 = 0                     (1.31) 

of (1.30) for 𝑝 ≡ 0, which has a root of the form 𝑟 = 𝑖𝛽 (𝛽 an integer) if the two equations  

 𝛽4 − 𝑎2𝛽2 + 𝑎4 = 0 and 𝑖𝛽(𝑎3 − 𝑎1𝛽2) = 0                     (1.32) 

Are satisfied simultaneously. Thus the corresponding non-homogenous equation (1.30) 

together with boundary conditions (1.29) have no non-trivial solutions if either 

     𝑋(𝛽) = 𝛽4 − 𝛼2𝛽2 + 𝑎4 ≠ 0                                       (1.33) 

     𝑎3 − 𝑎1𝛽2 ≠ 0                          (1.34) 

From (1.33) we obtain  

    𝑋(𝛽) = (𝛽2 −
1

2
𝑎2)2 + 𝑎4 −

1

4
𝑎2

2 ≠ 0                       (1.35) 

By completing the squares from (1.35) 

     𝑎4 >
1

4
𝑎2

2                            (1.36) 

follows. This in turn implies that equation (1.30) subject to conditions (1,29) have at least one 

2𝜋 − periodic solution if 𝑝 is bounded and 2𝜋 −periodic in 𝑡 for arbitrary 𝑎1  and 𝑎3 . The 

equation (1.36) and its generalization to nonlinear terms have been used extensively by 

scholars in the proof of existence of 2𝜋 − periodic solutions for nonlinear fourth order 

differential equation. For more results on the configurations of equation (1.30), Tiryaki and 

Tune (1995) proved existence of periodic solutions for the equation  

𝑥(4) + 𝑓1(𝑥̈)𝑥 + 𝑓2(𝑥̈)𝑥̈ + 𝑓3(𝑥̇) + 𝑓4(𝑥) = 0  

However, Tiryaki’s result was for the rivial solution. Tejumola (2006) proved also existence of 

nontrivial solution for the equation 

 𝑥(4) + 𝑔1(𝑥) + 𝑔2(𝑥̈) + 𝑔3(𝑥̇) + 𝑏4(𝑥) = 𝑝2(𝑡, 𝑥, 𝑥̇, 𝑥̈, 𝑥 ) 

Wth 𝑝2 ≡ 0  and  𝑔2 arbitrary.. 

Our objective here is to consider equation (1.34) among others as a condition for achieving 

existence of periodic solutions for equations (1.28) and (1.29). Note that equation (1.28) is 

comparable with equation (1.30) if  

18
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𝑓(𝑥) 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑎1 𝑥

𝑔(𝑥̇) 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑎2𝑥̈ 

ℎ(𝑥̇) 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑏𝑦 𝑎3𝑥̇

}                 (1.37) 

The functions 𝑓(𝑥)  and ℎ(𝑥̇)  replacing 𝑎1𝑥  and 𝑎3𝑥̇  suggest that 
𝑓(𝑥)

𝑥
 and ℎ′(𝑥̇)  are suitable 

replacement for 𝑎1 and 𝑎3 respectively. So in (1.34) suggests that an existence of a 2𝜋 −periodic 

solution might be provable for equation (1.28) where 𝑝 is bounded and 2𝜋 −perodic in 𝑡 for 

arbitrary any 𝑎 and 𝑎4. Since 𝑦 = 𝑥̇, 𝑧 = 𝑥̈, 𝑢 = 𝑥 then 
𝑓(𝑥)

𝑥
=

𝑓(𝑢)

𝑢
  and ℎ′(𝑥̇) = ℎ′(𝑦)  

 (1.38) 

Thus we have the following 

Theorem 4.1 Suppose further to the basic assumptions on 𝑓, 𝑔, ℎ, 𝑎4 and 𝑝 that  

1. There are constants  𝑎1 > 0, 𝑎3 > 0  such that 
𝑓(𝑢)

𝑢
≥ 𝑎1,  𝑎1 ≠ 0  (1.39) 

2. The function ℎ(𝑦) is such that ℎ′(𝑦) ≤ 𝑎3 < 𝑎1    (1.40) 

3. 𝑎1
−1𝑎3 ≠ 𝛽2         (1.41) 

4. The function 𝑝 is bounded and 2𝜋 −periodic in 𝑡. Then equation (1.28) and (1.29) have at 

least one 2𝜋 −periodic solution for arbitrary 𝑎 and 𝑎4. 

Note: The above theorem (4.1) is on a more general form of equation (1.3) and is as a result 

based on equation (1.34) which is rare in literature. 

Theorem 4.2  In addition to the basic assumption on 𝑔, ℎ, 𝑎3, 𝑎4 and 𝑝. Suppose that  

   𝑎4 >
1

4
ℎ(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑉(𝑥, 𝑥̇, 𝑥̈, 𝑥)       (1.42) 

The function 𝑝 is bounded and 2𝜋 −periodic in 𝑡. Then equation (1.28) and (1.29) have at least 

one 2𝜋 −periodic solution for arbitrary 𝑔 and 𝑎3. 

Proof of theorem 4.2 

The proof of theorem 4.2 is by Leray-Shauder fixed point technique and instead of considering 

  𝑥4 + 𝑔(𝑥) + ℎ(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ + 𝑎3𝑥̇ + 𝑎4𝑥 = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥̈, 𝑥)   (1.43) 

with boundary conditions 

 𝐷𝑟𝑥(0) = 𝐷𝑟𝑥(2𝜋),  𝑟 = 0,1,2,3,  𝐷 =
𝑑

𝑑𝑡
     (1.44) 

We consider the parameter 𝜆 − dependent equation 

   𝑥4 + 𝜆𝑔(𝑥) + ℎ𝜆(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ + 𝑎3𝑥̇ + 𝑎4𝑥 = 𝜆𝑝    (1.45) 

Where ℎ𝜆(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈ = (1 − 𝜆)𝑎2𝑥̈ + 𝜆ℎ(𝑥, 𝑥̇, 𝑥̈, 𝑥)𝑥̈      

By setting 𝑥̇ = 𝑦, 𝑦̇ = 𝑧, 𝑧̇ = 𝑢, 𝑢̇ = −𝜆𝑔(𝑢) − 𝜆𝑔(𝑧) − 𝑎3𝑦 − 𝑎4𝑥 + 𝜆𝑝, equation (1.45) can be 

written compactly in the matrix form  
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    𝑋̇ = 𝐴𝑋 + 𝜆𝐹(𝑋, 𝑡)        (1.46) 

where  𝑋 = [

𝑥
𝑦
𝑧
𝑢

] 𝐴 = [

0 1 0 0
0 0 1 0
0

−𝑎4

0
−𝑎3

0
−𝑎2

1
0

]    𝐹 = [

0
0
0
0

]    (1.47) 

with 𝑄 = 𝑝 − 𝑔(𝑢) − ℎ(𝑧) + 𝑎2𝑧. Equation (1.45) reduces to linear equation  

     𝑥4 + 𝑎2𝑥̈ + 𝑎3𝑥̇ + 𝑎4𝑥 = 0       (1.48) 

And to equation (1.43) if 𝜆 = 1. The eigenvalues of matrix 𝐴 defined by equation (1.47) are the 

roots of the auxiliary equation of (1.48) which have no roots of the form 𝑟 = 𝑖𝛽 (𝛽 is an integer). 

If  

    𝑎4 >
1

4
𝑎2

2         (1.49) 

The implication of (1.49) is that (1.48) to (1.46) have no nontrivial solutions. Therefore the 

matrix (𝑒−2𝜋𝐴 − 𝐼) (𝐼  being the identity 4 × 4 matrix) is invertible. Thus 𝑋 = 𝑋(𝑡) is a 2𝜋 

periodic solution of (1.46) if and only if  

    𝑋 = 𝜆𝑇𝑋,  0 ≤ 𝜆 ≤ 1        (1.50) 

Where the transformation 𝑇 is  defined by  

 (𝑇𝑋)(𝑡) = ∫ (𝑒−2𝜋𝐴 − 𝑇)−1𝑒𝐴(𝑡−𝑠)𝑇+2𝜋

0
𝐹(𝑋(𝑠))𝑑𝑠    (1.51) 

Let 𝑆  be the space of all real-valued continuous and 4-vector function 𝑋(𝑡) =

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑢(𝑡)) which are of period 2𝜋 with norm 

 ‖𝑋‖𝑠 =
𝑆𝑢𝑝

0 < 𝑡 < 2𝜋
 {|𝑥(𝑡)| + |𝑦(𝑡)| + |𝑧(𝑡)| + |𝑢(𝑡)|}    (1.52) 

If the operator 𝑇 defined by (1.51) is a compact mapping of 𝑆 into itself, then it suffices for the 

proof of theorem (4.2) to establish a priori bounds 𝐶1 , 𝐶2 , 𝐶3 and 𝐶4 independent of 𝜆 such that  

   |𝑥|∞ ≤ 𝐶1, |𝑥̇|∞ ≤ 𝐶2 , |𝑥̈|∞ ≤ 𝐶3 , |𝑥|∞ ≤ 𝐶4     (1.53) 

Verification of Equation (1.53)  

Let 𝑥(𝑡) be a possible 2𝜋 −periodic solution of equation (1.45). The main tool to be used here in 

the verification is the function 𝑤(𝑥, 𝑦, 𝑧, 𝑢) defined by  

    𝑤 = ∫ 𝑥(4)2
𝑑𝑡

𝑇

0
+ ∫ ℎ𝜆𝑥̈𝑥(4)𝑑𝑡

𝑇

0
+ ∫ 𝑎4𝑥̈2𝑇

0
𝑑𝑡 + ∫ 𝜆𝑝𝑥(4)𝑇

0
𝑑𝑡   (1.54) 

The time derivative 𝑤̇ is 

    𝑤̇ = 𝑥(4)2
+ ℎ𝜆𝑥̈𝑥(4) + 𝑎4𝑥̈2 − 𝜆𝑝𝑥4      (1.55) 

Integrating (1.55) with respect to (1.43) from 𝑡 = 0 to 𝑡 = 2𝜋 using (1.44) we obtain 

    ∫ 𝑥(4)2
𝑑𝑡

2𝜋

0
+ ∫ ℎ𝜆𝑥̈𝑥(4)𝑑𝑡

2𝜋

0
+ ∫ 𝑎4𝑥̈22𝜋

0
𝑑𝑡 ≤ ∫ |𝜆||𝑝|𝑥(4)2𝜋

0
𝑑𝑡 
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Further simplification gives 

   ∫ (𝑥4 +
1

2
ℎ𝜆𝑥̈)2𝑑𝑡

2

0
+ ∫ (𝑎4 +

1

4
ℎ𝜆

22𝜋

0
)𝑥̈2𝑑𝑡 ≤ 𝐶1 ∫ |𝑥4|

2𝜋

0
𝑑𝑡   (1.56) 

Where we have used the boundedness of 𝑝 and fact that 0 ≤ 𝜆 ≤ 1 to achieve (1.56) 

In particular, 

   ∫ (𝑥4 +
1

2
ℎ𝜆𝑥̈)2𝑑𝑡

2

0
≤ 𝐶1 ∫ |𝑥4|

2𝜋

0
𝑑𝑡      (1.57) 

In pursuit of proof of (1.29), we need the following lemma in Ezeilo and Onyia (1984) 

Lemma 4.3 Let 𝑥 = 𝑥(𝑡) be a twice differentiable 2𝜋 −periodic function of 𝑡. Then  

   ∫ (𝑥̈ + 𝑣𝑥)2𝑑𝑡
2𝜋

0
≥ 𝛽2 ∫ 𝑥2𝑑𝑡

2𝜋

0
      (1.58) 

Lemma 4.4 Let 𝑥 = 𝑥(𝑡) be a twice continuously differentiable 2𝜋 −periodic function of 𝑡. Then 

there are constants 𝐶2 , 𝐶3 such that 

  ∫ 𝑥̇22𝜋

0
𝑑𝑡 ≤ 𝐶2 ∫ (𝑥̈ + 𝑣𝑥)22𝜋

0
𝑑𝑡       (1.59) 

and 

    ∫ 𝑥̈22𝜋

0
𝑑𝑡 ≤ 𝐶3 ∫ (𝑥̈ + 𝑣𝑥)22𝜋

0
𝑑𝑡      (1.60) 

Since 𝑦 = 𝑥̇,  𝑧 = 𝑥̈ without loss of generality 

    ∫ (𝑥(4) + 𝛼𝑥̈)22𝜋

0
𝑑𝑡 ≤ 𝐶1 ∫ |𝑥4|𝑑𝑡

2𝜋

0
      (1.61) 

is identical to  

   ∫ (𝑧̈ + 𝛼𝑧)22𝜋

0
𝑑𝑡 ≤ 𝐶1 ∫ |𝑧̈|

2𝜋

0
𝑑𝑡      (1.62) 

Therefore  

   ∫ (𝑧̈ + 𝛼𝑧)22𝜋

0
≥ 𝛽2 ∫ 𝑧22𝜋

0
𝑑𝑡        (1.63) 

which is analogous from Lemma (4.1) of (1.58). Also 

  ∫ 𝑧̈22𝜋

0
𝑑𝑡 ≤ 𝐶3 ∫ (𝑧̈ + 𝛼𝑧)2𝑑𝑡

2𝜋

0
       (1.64) 

From (1.61) and (1.64) we have  

   ∫ (𝑥4)2(𝑡)
2𝜋

0
𝑑𝑡 ≤ 𝐶3𝐶1 ∫ |𝑥(4)|𝑑𝑡

2𝜋

0
≤ 𝐶3𝐶1(2𝜋)

1

2|𝑥4|2   (1.65) 

by Schwartz’s inequality. Thus  

    |𝑥(4)| ≤ 𝐶4         (1.66) 

Where 𝐶4 = 𝐶3𝐶1(2𝜋)
1

2 
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From (4.39) and because of (1.55) with 𝑟 = 3 

    |𝑥|∞ ≤ 𝐶5         (1.67) 

Since 𝑥̇(0) = 𝑥̇(2𝜋), there exist 𝑥̈(𝜏1) = 0 for some (𝜏1) ∈ [0,2𝜋] such that the identity  

𝑥̈(𝑡) = 𝑥̈(𝜏1) + ∫ 𝑥
𝑡

𝜏1
(𝑠)𝑑𝑠 holds. 

Therefore 
𝑚𝑎𝑥

0 ≤ 𝑡 ≤ 2𝜋
 |𝑥̈(𝑡)| ≤ ∫ |𝑥(𝑡)|

2𝜋

0
𝑑𝑡 ≤ (2𝜋)

1

2|𝑥|2 by Schwartz’s inequality. In view of 

(1.67) 

   |𝑥|∞ ≤ 𝐶6          (1.68) 

Again 𝑥(0) = 𝑥(2𝜋) implies that there exists 𝑥̇(𝜏2) = 0  for some 𝜏2 ∈ [0,2𝜋]  such that the 

identity 𝑥̇(𝑡) = 𝑥̇(𝜏2) + ∫ 𝑥̈(𝑠)𝑑𝑠
𝑡

𝜏1
 holds. 

From which  
𝑚𝑎𝑥

0 ≤ 𝑡 ≤ 2𝜋 |𝑥̇(𝑡)| ≤ ∫ |𝑥̈|
2𝜋

0
𝑑𝑡 ≤ (2𝜋)

1

2|𝑥̈|2 by Schwartz’s inequality. From (1.68) 

we have 

    |𝑥̇|∞ ≤ 𝐶7                        (1.69) 

It remain only the first inequality in (1.53) and for theorem 4.1. Now integrating (1.45) with 

respect to 𝑡 from 𝑡 = 0 to 𝑡 = 2𝜋 and using (1.44) we have  

 ∫ 𝑎4𝑥𝑑𝑡
2𝜋

0
= ∫ 𝜆𝑝𝑑𝑡

2𝜋

0
− ∫ 𝜆𝑔(𝑥)𝑑𝑡

2𝜋

0
− ∫ ℎ𝜆

2𝜋

0
(𝑥̈)𝑑𝑡 − ∫ 𝑎3𝑥̇𝑑𝑡

2𝜋

0
  (1.70) 

with bounds on 𝑥, 𝑥̈  and 𝑥̇ established in (1.65), (1.66) and (1.67) respectively and the 

boundedness of 𝑝 together with the fact that 0 ≤ 𝜆 ≤ 1, the expression on the right hand side of 

equation (1.68) is bounded. That is 

   ∫ 𝜆𝑝𝑑𝑡
2𝜋

0
− ∫ 𝜆𝑔(𝑥)𝑑𝑡

2𝜋

0
− ∫ ℎ𝜆

2𝜋

0
(𝑥̈)𝑑𝑡 − ∫ 𝑎3𝑥̇𝑑𝑡

2𝜋

0
≤ 𝐶8     

Therefore 

   ∫ |𝑎4𝑥|
2𝜋

0
𝑑𝑡 ≤ 𝐶8        (1.71) 

Further simplification yields 

     ∫ |𝑥|
2𝜋

0
𝑑𝑡 ≤ 𝐶9        (1.72) 

Where 𝐶9 = 𝑎4
−1𝐶8;  𝑎4 ≠ 0. Therefore 

𝑚𝑎𝑥
0 ≤ 𝑡 ≤ 2𝜋

|𝑥(𝑡)| ≤ 𝐶9. Hence 

      |𝑥|∞ ≤ 𝐶10          (1.73) 

Using the estimate of (1.67), (1.68), (1.69) and (1.73) the proof of theorem 4.1 is established. 
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5. Conclusions 

In the present results for fourth order differential equation, integrated equations are used in 

estimating a priori bounds which has the following advantages 

(a) It yields itself estimates for ∫ 𝑥2(𝑡)𝑥̈
2𝜋

0
𝑑𝑡 or ∫ 𝑥2𝑥̇

𝜋

0
𝑑𝑡 

(b) The integral taken between 0 to 2𝜋 leads to vanishing of some terms due to 2𝜋 −periodicity 

condition. 

(c) Integrated equations are easier to construct and are rare in literature unlike the Lyapunov 

function which are complex and cumbersome to construct for higher order nonlinear 

differential equations. 

(d) The theorems have been develop through a progression from constant coefficient equations 

and the nonlinear equation. Also other relevant conditions were added to the hypotheses of the 

theorems. 
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