

Original Research Paper

THE TRIANGULAR NUMBERS IN ACTIONS

Mulatu Lemma, Daniel Lemaitre \& Rashamel Edwards
Department of Mathematics, College of Science and Technology, Savannah State University, USA.

Corresponding author: *Mulatu Lemma
Email: lemmam@savannahstate.edu

```
A B STRACT
The triangular numbers are formed by partial sum of the series 1+2+3+4+5+6+7\ldots.+n [2]. In other words,
triangular numbers are those counting numbers that can be written as }\mp@subsup{T}{n}{}=1+2+3+\ldots+n. So
T1=1
T2 = 1+2=3
T3}=1+2+3=
T4=1+2+3+4=10
T5}=1+2+3+4+5=1
T6}=1+2+3+4+5+6=2
T7 = 1+2+3+4+5+6+7=28
Ts=1+2+3+4+5+6+7+8=36
T9=1+2+3+4+5+6+7+8+9=45
T10 =1+2+3+4+5+6+7+8+9+10=55
In this paper we investigate some important properties of triangular numbers. Some important results
dealing with the mathematical concept of triangular numbers will be proved. We try our best to give short
and readable proofs. Most of the results are supplemented with examples.
K EY W ORD S
Triangular numbers, Perfect square, Pascal Triangles, and perfect numbers.
```


1. Introduction :

The sequence $1,3,6,10,15, \ldots, n(n+1) / 2, \ldots$ shows up in many places of mathematics[1]. The Greek called them triangular numbers [1]. The triangular number T_{n} is a figurate number that can be represented in the form of a triangular grid of points where the first row contains a single element and each subsequent row contains one more element than the previous one as shown below [2].

Mathematicians have been fascinated for many years by the properties and patterns of triangular numbers [2]. We can easily hunt for triangular numbers using the formula:

$$
T_{n}=\frac{n(n+1)}{2}, n>0
$$

T_{1}	T_{2}	T_{3}	T_{4}	T_{5}	T_{6}	T_{7}	T_{8}	T_{9}	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}	T_{16}	T_{17}	T_{18}	T_{19}	T_{20}
1	3	6	10	15	21	28	36	45	55	66	78	91	105	120	136	153	171	190	210

The first 20 triangular numbers are as follows.

2. The Main Results:

Theorem 1: Every triangular number is a binomial coefficient.
Thoerem2. Every T triangular number is an arithmetic progression.

Thoerem 3.
Theorem 4
Theorem 5 . Every perfect number is a triangular number.

Proof without words Refer to the following Pascal's Triangle [2] and see the red colored numbers.

```
                    1
                    1 1
                        1 2 1
                        1 3 3 1
                    14464 1
                        1 5
                        1
                        1 7 21 35 35 21 7 1
                        1
1
```

Remark1: Also note that $T_{n}=\frac{n(n+1)}{2}=\binom{\mathrm{n}+1}{2}$ which is a binomial coefficient for each $\mathbf{n} \geq 1$.
Theorem 1: T is a triangular number $\Leftrightarrow 8 \mathrm{~T}+1$ is a perfect square.

Proof: \quad (i) (\Rightarrow) Assume T is a triangular number.

$$
\begin{aligned}
& \text { Let } \mathrm{T}=\frac{n(n+1)}{2}, \mathrm{n} \text { a positive integer. } \\
& \Rightarrow 8 T=8 \frac{n(n+1)}{2} \\
& \Rightarrow 8 T+1=8 \frac{n(n+1)}{2}+1 \\
& \Rightarrow 8 T+1=8 \frac{n(n+1)}{2}+\frac{2}{2} \\
& \Rightarrow 8 T+1=\frac{8 n^{2}+8 n+2}{2} \\
& \Rightarrow 8 T+1=2 \frac{\left(4 n^{2}+4 n+1\right)}{2} \\
& \Rightarrow 8 \\
&=(2 n+1)(2 \mathrm{n}+1) \\
&=(2 \mathrm{n}+1)^{2}
\end{aligned}
$$

Hence, $8 \mathrm{~T}+1$ is a perfect square.
(ii) Assume $8 \mathrm{~T}+1$ is a perfect square. Then $8 \mathrm{~T}+1$ is odd \Rightarrow for some positive integer n , we have $8 \mathrm{~T}+1=(2 \mathrm{n}+1)^{2}=4 n^{2}+4 n+1$ implies that $\mathrm{T}==\frac{n(n+1)}{2}$.

Hence, T is a triangular number.
By (i) and (ii) the theorem is proved.

Example 1. 6 is a triangular number implies that $8(6)+1=49$ is a perfect square
Example 2. 8(15) $+1=121$, a perfect square implies that 15 is a triangular number.
Corollary 1. T is a triangular number $\Leftrightarrow_{\mathrm{n}}=\frac{\sqrt{8 T+1}-1}{2}$ is an integer.

Proof: The corollary easily follows by Theorem 1.

Theorem 2: If T_{m} and T_{n} are triangular numbers, then

$$
T_{m+n}=T_{m}+T_{n}+m n \quad \text { for } m \text { and } \mathrm{n} \text { positive integers. }
$$

Proof:

$$
\begin{aligned}
& \text { Note: } T_{m}=\frac{m(m+1)}{2} \& T_{n}=\frac{n(n+1)}{2} . \text { Then } \\
& \begin{aligned}
T_{m}+T_{n}+m n & =\frac{m(m+1)}{2}+\frac{n(n+1)}{2}+\mathrm{mn} \\
& =\frac{m^{2}+m+n^{2}+n}{2}+m n \\
& =\frac{m^{2}+m+n^{2}+n+2 m n}{2}=\frac{m^{2}+2 m n+n^{2}+m+n}{2} \\
= & \frac{(m+n)(m+n)+(m+n)}{2}=\frac{(m+n)[m+n+1]}{2}=T_{m+n}
\end{aligned}
\end{aligned}
$$

Example 3. Consider T_{3} and T_{4}. Note that $T_{3}=6$ and $T_{4}=10$. Observe that $T_{3+4}=T_{7}=28$ and $T_{3}+\mathrm{T}_{4}+3(4)=6+10+12=28$.

Hence, $\quad T_{3+4}=T_{3}+T_{4+3(4)}$

Theorem 3: If T_{m} and T_{n} are triangular numbers, then

$$
T_{m n}=T_{m} T_{n}+T_{m-1} T_{n-1}
$$

Proof: \quad Note: $\quad T_{m}=\frac{m(m+1)}{2}$ and $T_{n}=\frac{n(n+1)}{2}$. Then

$$
\begin{aligned}
T_{m} T_{n}+T_{m-1} T_{n-1} & =\frac{m(m+1)}{2} \frac{n(n+1)}{2}+\frac{(m-1) m}{2} \frac{(n-1) n}{2} \\
& =\left(\frac{m^{2}+m}{2}\right)\left(\frac{n^{2}+n}{2}\right)+\left(\frac{m^{2}-m}{2}\right)\left(\frac{n^{2}-n}{2}\right) \\
& =\left[\frac{m^{2} n^{2}+m n^{2}+n m^{2}+m n}{4}\right]+\left[\frac{m^{2} n^{2}-m n^{2}-n m^{2}+m n}{4}\right] \\
& =\frac{2 m^{2} n^{2}+2 m n}{4}=\frac{2 m n(m n+1)}{4}=\frac{m n(m n+1)}{2} \\
& =T_{m n}
\end{aligned}
$$

Example 4. Let $\mathrm{m}=6$ and $\mathrm{n}=7$. Then $T_{6}=21$ and $\mathrm{T}_{7}=28$.
By using $T_{n}=\frac{n(n+1)}{2}$, we get $\mathrm{T}_{(6)(7)}=\mathrm{T}_{42}=\frac{42(43)}{2}=903$
We also have $T_{5} T_{6}=15(21)=315$ and $T_{6} T_{7}+T_{5} T_{6}={ }_{588+315=903 .}$.
Hence, $T_{(6)(7)}=T_{42}=T_{6} T_{7}+T_{5}+T_{6}$

Lemma 1. The sum of two consecutive triangular numbers is a perfect square
Proof: Let T_{n-1} and T_{n} be any two consecutive triangular numbers, such that

$$
T_{n-1}=\frac{(n-1)(n)}{2} \text { and } T_{n=}=\frac{n(n+1)}{2}
$$

Then,

$$
T_{n-1}+T_{n}=\frac{(n-1) n}{2}+\frac{n(n+1)}{2}
$$

$$
=\frac{n^{2}-n+n^{2}+n}{2}=\frac{2 n^{2}}{2}=n^{2}
$$

Which is a perfect square.

Example 5. Let T_{6} and T_{7} be any consecutive triangular numbers. Then $T_{6}+T_{7}=21+28=49$, which is a perfect square.

Lemma 2. $1^{2}+2^{2}+3^{2}+4^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$

Proof. We can easily prove the lemma using induction.

Example 6. Let $\mathrm{k}=5$. Then $1^{2}+2^{2}+3^{3}+4^{2}+5^{2}=1+4+9+16+25=55$.

Also, we have $\frac{5(6)(11)}{6}=\mathbf{5 5}$ and hence $1^{2}+2^{2}+3^{3}+4^{2}+5^{2}=\frac{5(6)(11)}{6}$.

Theorem 4. If T_{k} be triangular numbers fork $k>0$, then we have

$$
\sum_{k=1}^{n} T_{k}=\frac{n(n+1)(n+2)}{6}
$$

Proof: To prove the theorem, we apply divide and conquer method by considering two cases:
(1) If n is even, say $n=2 k$, then

$$
\begin{aligned}
T_{1}+T_{2}+\ldots+T_{n} & =\left(T_{1}+T_{2}\right)+\left(T_{3}+T_{4}\right)+\ldots+\left(T_{2 k-1}+T_{2 k}\right) \\
& =2^{2}+4^{2}+\ldots+(2 k)^{2} \quad(\text { by Lemma } 1) \\
& =4\left(1^{2}+2^{2}+\ldots+k^{2}\right) \\
& =\frac{4 k(2 k+1)(k+1)}{6}(\text { by Lemma } 2) . \\
& =\frac{n(n+1)(n+2)}{6} \quad \text { as } \mathrm{n}=2 \mathrm{k}
\end{aligned}
$$

(2) If n is odd, say $\mathrm{n}=2 \mathrm{k}+1$, then

$$
T_{1}+T_{2}+\ldots+T_{n}=\left(T_{1}+T_{2}\right)+\left(T_{3}+T_{4}\right)+\ldots+\left(T_{2 k-1}+T_{2 k}\right)+T_{2 k+1}
$$

$=2^{2}+4^{2}+\ldots+(2 k)^{2}+\frac{(2 k+1)(2 k+2)}{2}\left(\right.$ by Lemma 1 and definition of $\left.T_{k}\right)$

$$
\begin{aligned}
& =4\left(1^{2}+2^{2}+\ldots+k^{2}\right)+\frac{(2 k+1)(2 k+2)}{2} \\
& =\frac{4 k(2 k+1)(k+1)}{6}+\frac{3(2 k+1)(2 k+2)}{6}(\text { by Lemma } 2 .) \\
& =\frac{2 k(2 k+1)(2 k+2)}{6}+\frac{3(2 k+1)(2 k+2)}{6} \\
& =\frac{(2 k+1)(2 k+2)(2 k+3)}{6} \\
& =\frac{n(n+1)(n+2)}{6} \text { as } \mathrm{n}=2 \mathrm{k}+1
\end{aligned}
$$

By (1) and (2) the Theorem is proved.

Example 7. Let $\mathrm{n}=5$. Then $\sum_{k=1}^{5} T_{k}=T_{1}+T_{2}+T_{3}+T_{4}+T_{5}=1+3+6+10+15=35$. We also have,

$$
\frac{5(6)(7)}{6}=35 \text { and hence } \sum_{k=1}^{5} T_{k}=\frac{5(6)(7)}{6}
$$

Theorem 5 For any natural number n, the number
$\mathbf{1 + 9 + 9 ^ { 2 }}+9^{3}+\ldots+9^{n}$ is a triangular number.

Proof: Let $T=\mathbf{1}+9+\mathbf{9}^{2}+9^{3}+\ldots+\mathbf{9}^{\mathrm{n}}$. Then $\mathrm{T}=\frac{9^{n+1}-1}{8}$.

By Theorem 1, it is suffice to prove that $\mathbf{8 T} \mathbf{+ 1}$ is a perfect square. We will apply the divide and conquer method as in Theorem 4.
(1) If n is even, say $\mathrm{n}=2 \mathrm{k}$, then
$8 \mathrm{~T}+1=8\left(\frac{9^{n+1}-1}{8}\right)+1=9^{n+1}=9^{2 k+1}=9\left(9^{2 k}\right)=\left(3^{2 k+1}\right)^{2}$, which a perfect square.
(2) If n is odd, say $n=2 k+1$, then
$8 \mathrm{~T}+1=8\left(\frac{9^{n+1}-1}{8}\right)+1=9^{n+1}=9^{2 k+2}=\left(9^{k+1}\right)^{2}$, which a perfect square.
By (1)and (2), the theorem is proved.
Theorem 6. If $\boldsymbol{T}_{\boldsymbol{n}}$ be triangular numbers for $n \geq 1$, then we have

$$
\sum_{n=1}^{\infty} \frac{1}{T_{n}}=2
$$

Proof: $\quad \sum_{n=1}^{\infty} \frac{1}{T_{n}}$

$$
=\sum_{n=1}^{\infty} \frac{2}{n(n+1)}
$$

$$
=2 \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

$$
=2(1)=2
$$

Proposition 2. The difference of the squares of two consecutive triangular numbers is a cube.
Proof: Consider $T_{n-1}=\frac{(n-1) n}{2}$ and $\mathrm{T}_{\mathrm{n}}=\frac{(n+1) n}{2}$
Then, $\left(T_{n}\right)^{2}-\left(T_{n-1}\right)^{2}=\left(\frac{n(n+1}{2}\right)^{2}-\left(\frac{(n-1) n}{2}\right)^{2}$

$$
=\frac{n^{4}+2 n^{2}+n^{2}}{4}-\frac{n^{4}-2 n^{3}+n^{2}}{4}=\frac{4 n^{3}}{4}=n^{3}
$$

Example 8. Let T_{6} and T_{7} be any two consecutive triangular numbers. Then $\left(T_{7}\right)^{2}-\left(T_{6}\right)^{2}=28^{2}-21^{2}=(28+-21)(28-21)=(49)(7)=7^{3}$, which is a perfect cube.

Proposition 3: T is a triangular is number $\Rightarrow 9 \mathrm{~T}+1$ is a triangular number .
Proof: Assume T is a triangular number.

$$
\text { Let } \quad T=\frac{n(n+1)}{2}
$$

$$
\begin{aligned}
\Rightarrow 9 T & =\frac{9 n(n+1)}{2} \\
\Rightarrow 9 T+1 & =\frac{9 n(n+1)}{2}+1 \\
& =\frac{9 n(n+1)}{2}+\frac{2}{2} \\
& =\frac{9 n(n+1)+2}{2} \\
& =\frac{9 n^{2}+9 n+2}{2} \\
& =\frac{(3 n+2)(3 n+1)}{2} \\
& =\frac{m(m+1)}{2}, \text { where } \mathbf{m}=\mathbf{3 n} \mathbf{+ 1} .
\end{aligned}
$$

Hence, $9 \mathrm{~T}+1$ is a triangular number.

Example 9. Let \boldsymbol{T}_{8} be the triangular number. Then $9 \boldsymbol{T}_{8}+1=45$, which is a triangular number.
Proposition 4: $\mathrm{n}=2^{k-1}+2^{k}+2^{k+1}+\ldots+2^{2 k-2}$ is a triangular number.
Proof: Note that $\mathrm{n}=2^{k-1}+2^{k}+\ldots . .+2^{2 k-2}=2^{k-1}\left(1+2+2^{2}+\ldots . .+2^{k-1}\right)$

$$
\begin{aligned}
& =2^{k-1}\left(2^{k}-1\right) \\
& =\frac{2^{k}\left(2^{k}-1\right)}{2}
\end{aligned}
$$

$=\frac{m(m+1)}{2}$, where $\mathrm{m}=2^{k}-1$.
Hence, n is a triangular number
Example 10. Let $\mathrm{k}=3$. Then $\mathbf{n}=2^{3-1}+2^{3}+2^{4}=28$, which is a triangular number.

Proposition 5. $n=1+2+3+4+\ldots+\left(2^{k}-1\right)$ is a triangular number.

Proof : Note that $\mathrm{n}=$

$$
\frac{2^{k}\left(2^{k}-1\right)}{2}
$$

$$
=\frac{m(m+1)}{2}, \text { where } m=2^{k}-1 .
$$

Hence, n is a triangular number
Example 11. Let $\mathrm{k}=3$. Then $1+2+3+4+5+6+7=28$, which is a triangular numbers.
Proposition 6. Every Perfect number [3] is a triangular number.
Proof: Let n be a perfect number. Then $\mathrm{n}=2^{k-1}\left(2^{k}-1\right)$ where $2^{k}-1$ is prime [3]. Note that $\mathrm{n}=$ $2^{k-1}\left(2^{k}-1\right)=\frac{2^{k}\left(2^{k}-1\right)}{2}=\frac{m(m+1)}{2}$, where $\mathrm{m}=2^{k}-1$. Hence n is a triangular number.

Proposition 7. Let T_{n} be a triangular number. Then:

$$
\text { (1) } \mathbf{T}_{\mathbf{n}}^{2}=\mathbf{T}_{\mathrm{n}}+\mathbf{T}_{\mathrm{n}-1} * \mathbf{T}_{\mathrm{n}+1}
$$

(2) $\mathrm{T}_{\mathrm{n}}{ }^{2}-1=2 * T_{\mathrm{n}} * T_{\mathrm{n}-1}$

Proof:

(1) We have $\mathbf{T}_{\mathbf{n}}+\mathbf{T}_{\mathbf{n}-\mathbf{1}} * \mathbf{T}_{\mathbf{n}+\mathbf{1}}=\frac{n(n+1)}{2}+\frac{(n-1) n}{2} * \frac{(n+1)(n+2)}{2}$

$$
\begin{aligned}
& =\frac{n(n+1)}{2}+\frac{n^{4}+2 n^{3}-n^{2}-2 n}{4} \frac{2 n^{2}+2 n+n^{4}+2 n^{3}-n^{2}-2 n}{4} \\
& =\frac{n^{4}+2 n^{3}+n^{2}}{4} \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =T_{n}^{2}
\end{aligned}
$$

(2) Note that $\quad T_{n^{2}-1}=\frac{\left(n^{2}-1\right)\left(n^{2}\right)}{2}$

$$
\begin{aligned}
& =\frac{((n-1) n)(n(n+1))}{2} \\
& =\frac{2((n-1) n)(n(n+1))}{4} \\
& =2 * \frac{(n-1) n}{2} * \frac{n(n+1)}{2}
\end{aligned}
$$

References

1. Jones K, Parker S, and Lemma M: The Mathematical Magic of Perfect Numbers: GaJSci 66(3): 97-106, 2008
2. Gupta S: "Fascinating Triangular Numbers" : p3, 2002
3. Hamburg C: "Triangular Numbers Are Everywhere!": Illinois, Mathematics and Science Academy: p5, 1992.
