ON THE NEGATIVE PELLIAN EQUATION

$$
x^{2}=8 y^{2}-4
$$
M.A. Gopalan ${ }^{1}$, Sharadha Kumar ${ }^{2}$
${ }^{1}$ Professor, Department of Mathematics, SIGC, Trichy-620 002, Tamilnadu, India.
e-mail:mayilgopalan@gmail.com
${ }^{2}$ M.Phil Scholar, Department of Mathematics, SIGC, Trichy-620 002, Tamilnadu, India.
e-mail:sharadhak12@gmail.com@gmail.com

Abstract

The binary quadratic equation represented by the negative pellian $x^{2}=8 y^{2}-4$ is analyzed for its distinct integer solutions. A few interesting relations among the solutions are given. Further, employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas, parabolas and special Pythagorean triangle.

Keywords: Binary quadratic, Pell equation, Hyperbola, Parabola, Integral solutions

1.Introduction

Diophantine equation of the form $y^{2}=D x^{2}-1$, where D is a given positive square-free integer is known as pell equation and is one of the oldest Diophantine equation that has interesting mathematicians all over the world, since antiquity, J.L. Lagrange proved that the positive pell equation $y^{2}=D x^{2}+1$ has infinitely many distinct integer solutions whereas the negative pell equation $y^{2}=D x^{2}-1$ does not always have a solution. In [1], an elementary proof of a centerium for the solvability of the pell equation $x^{2}-D y^{2}=1$ where D is any positive non-square integer has been presented. For examples the equations $y^{2}=3 x^{2}-1, y^{2}=7 x^{2}-4$ have no integer solution whereas $y^{2}=54 x^{2}-1, y^{2}=202 x^{2}-1$ have integer solutions. In this context, one may refer [2-18]. More specifically, one may refer "The on-line encyclopedia of integer sequences" (A031396, A130226, A031398) for all values of D for which the negative pell equation $y^{2}=D x^{2}-1$ is solvable or not. In this communication, the negative pell equation given by is considered $x^{2}=8 y^{2}-4$ is considered and infinitely many integer solutions are obtained. A few interesting relations among the solutions are presented.

2. Method of Analysis:

The Diophantine equation under consideration is

$$
\begin{equation*}
x^{2}=8 y^{2}-4 \tag{1}
\end{equation*}
$$

The smallest positive integer solution $\left(y_{0}, x_{0}\right)$ of (1) is

$$
y_{0}=1, x_{0}=2
$$

To obtain the other solutions of (1), consider the pellian equation

$$
\begin{equation*}
x^{2}=8 y^{2}+1 \tag{2}
\end{equation*}
$$

whose general solution $\left(\tilde{y}_{n}, \tilde{x}_{n}\right)$ is given by

$$
\begin{aligned}
& \tilde{x}_{n}=\frac{1}{2}\left[(3+\sqrt{8})^{n+1}+(3-\sqrt{8})^{n+1}\right]=\frac{1}{2} f_{n} \\
& \tilde{y}_{n}=\frac{1}{2 \sqrt{8}}\left[(3+\sqrt{8})^{n+1}-(3-\sqrt{8})^{n+1}\right]=\frac{1}{2 \sqrt{8}} g_{n}
\end{aligned}
$$

Applying Brahmagupta lemma between the solutions $\left(y_{0}, x_{0}\right)$ and ($\left.\tilde{y}_{n}, \widetilde{x}_{n}\right)$, the general solution $\left(y_{n+1}, x_{n+1}\right)$ of (1) is found to be

$$
\begin{align*}
& y_{n+1}=\frac{1}{\sqrt{8}} g_{n}+\frac{1}{2} f_{n} \tag{3}\\
& x_{n+1}=f_{n}+\frac{\sqrt{8}}{2} g_{n} \tag{4}
\end{align*}
$$

Thus, (9) and (10) represent the integer solutions of the hyperbola (1).
A few numerical examples are given in the following Table 1:

Table 1: Examples

\boldsymbol{n}	$\boldsymbol{x}_{\boldsymbol{n + 1}}$	$\boldsymbol{y}_{\boldsymbol{n + 1}}$
-1	2	1
0	14	5
1	82	29
2	478	169

The recurrence relation satisfied by the values of x_{n+1} and y_{n+1} are respectively

$$
\begin{aligned}
& x_{n+3}-6 x_{n+2}+x_{n+1}=0, n=-1,0,1 \ldots . \\
& y_{n+3}-6 y_{n+2}+y_{n+1}=0, n=-1,0,1 \ldots .
\end{aligned}
$$

- A few interesting relations among the solutions are given below:

$$
\begin{array}{ll}
\nLeftarrow & 3 x_{n+1}-x_{n+2}+8 y_{n+1}=0 \\
\not & x_{n+1}-3 x_{n+2}+8 y_{n+2}=0 \\
\& & 3 x_{n+1}-17 x_{n+2}+8 y_{n+3}=0 \\
\& & 17 x_{n+1}-x_{n+3}+48 y_{n+1}=0 \\
\& & 3 x_{n+1}-3 x_{n+3}+48 y_{n+2}=0 \\
\& & x_{n+1}-17 x_{n+3}+48 y_{n+3}=0 \\
\& & y_{n+2}-x_{n+1}-3 y_{n+1}=0 \\
\& & y_{n+3}-6 x_{n+1}-17 y_{n+1}=0 \\
\nLeftarrow & 3 y_{n+3}-x_{n+1}-17 y_{n+2}=0 \\
\nLeftarrow & x_{n+1}+17 y_{n+2}-3 y_{n+3}=0 \\
\& & 17 x_{n+2}-3 x_{n+3}+8 y_{n+1}=0 \\
\& & 3 x_{n+2}-x_{n+3}+8 y_{n+2}=0 \\
\& & x_{n+2}-3 x_{n+3}+8 y_{n+3}=0 \\
\& & 3 y_{n+2}-x_{n+2}-y_{n+1}=0 \\
\& & 3 y_{n+3}-6 x_{n+2}-3 y_{n+1}=0 \\
\& & x_{n+2}+y_{n+1}-3 y_{n+2}=0 \\
\& & y_{n+3}-x_{n+2}-3 y_{n+2}=0 \\
\& & x_{n+2}+3 y_{n+2}-y_{n+3}=0 \\
\& & 17 y_{n+2}-x_{n+3}-3 y_{n+1}=0 \\
\& & 17 y_{n+3}-6 x_{n+3}-y_{n+1}=0 \\
\& & 3 x_{n+2}-x_{n+3}+8 y_{n+2}=0 \\
\& & 3 y_{n+3}-x_{n+3}-y_{n+2}=0 \\
\& & x_{n+3}+y_{n+2}-3 y_{n+3}=0
\end{array}
$$

Each of the following expressions represents a cubical integer

* $\frac{1}{4}\left[\left(2 x_{3 n+4}-10 x_{3 n+3}\right)+3\left(2 x_{n+2}-10 x_{n+1}\right)\right]$

GPH - Journal of Mathematics

$$
\begin{aligned}
& \neq \frac{1}{24}\left[\left(2 x_{3 n+5}-58 x_{3 n+3}\right)+3\left(2 x_{n+3}-58 x_{n+1}\right)\right] \\
& \& \frac{1}{4}\left[\left(16 y_{3 n+3}-4 x_{3 n+3}\right)+3\left(16 y_{n+1}-4 x_{n+1}\right)\right] \\
& * \frac{1}{12}\left[\left(16 y_{3 n+4}-28 x_{3 n+3}\right)+3\left(16 y_{n+2}-28 x_{n+1}\right)\right] \\
& * \frac{1}{68}\left[\left(16 y_{3 n+5}-164 x_{3 n+3}\right)+3\left(16 y_{n+3}-164 x_{n+1}\right)\right] \\
& * \frac{1}{4}\left[\left(10 x_{3 n+5}-58 x_{3 n+4}\right)+3\left(10 x_{n+3}-58 x_{n+2}\right)\right] \\
& * \frac{1}{12}\left[\left(80 y_{3 n+4}-28 x_{3 n+4}\right)+3\left(80 y_{3 n+2}-28 x_{n+2}\right)\right] \\
& * \frac{1}{68}\left[\left(464 y_{3 n+3}-4 x_{3 n+5}\right)+3\left(464 y_{n+1}-4 x_{n+3}\right)\right] \\
& * \frac{1}{12}\left[\left(464 y_{3 n+4}-28 x_{3 n+5}\right)+3\left(464 y_{n+2}-28 x_{n+3}\right)\right] \\
& * \frac{1}{4}\left[\left(464 y_{3 n+5}-164 x_{3 n+5}\right)+3\left(464 y_{n+3}-164 x_{n+3}\right)\right] \\
& \& \frac{1}{4}\left[\left(28 y_{3 n+3}-4 y_{3 n+4}\right)+3\left(28 y_{n+1}-4 y_{n+2}\right)\right] \\
& \& \frac{1}{24}\left[\left(164 y_{3 n+3}-4 y_{3 n+5}\right)+3\left(164 y_{n+1}-4 y_{n+3}\right)\right] \\
& \& \frac{1}{4}\left[\left(164 y_{3 n+4}-28 y_{3 n+5}\right)+3\left(164 y_{n+2}-28 y_{n+3}\right)\right]
\end{aligned}
$$

Each of the following expressions represents Biquadratic integer:

$$
\begin{aligned}
& \not \frac{1}{(4)^{2}}\left[\left(8 x_{4 n+5}-40 x_{4 n+4}\right)+4\left(2 x_{n+5}-10 x_{n+1}\right)^{2}-32\right] \\
& \approx \frac{1}{(4)^{2}}\left[\left(64 y_{4 n+4}-16 x_{4 n+4}\right)+4\left(16 y_{n+1}-4 x_{n+1}\right)^{2}-32\right] \\
& * \frac{1}{(12)^{2}}\left[\left(192 y_{4 n+5}-336 x_{4 n+4}\right)+4\left(16 y_{n+2}-28 x_{n+1}\right)^{2}-288\right] \\
& \approx \frac{1}{(4)^{2}}\left[\left(40 x_{4 n+6}-232 x_{4 n+5}\right)+4\left(10 x_{n+3}-58 x_{n+2}\right)^{2}-32\right]
\end{aligned}
$$

GPH - Journal of Mathematics

$$
\begin{aligned}
& \neq \frac{1}{(12)^{2}}\left[\left(960 y_{4 n+4}-48 x_{4 n+5}\right)+4\left(80 y_{n+1}-4 x_{n+2}\right)^{2}-288\right] \\
& \not \frac{1}{(4)^{2}}\left[\left(320 y_{4 n+5}-112 x_{4 n+5}\right)+4\left(80 y_{n+2}-28 x_{n+2}\right)^{2}-32\right] \\
& \neq \frac{1}{(12)^{2}}\left[\left(960 y_{4 n+6}-1968 x_{4 n+5}\right)+4\left(80 y_{n+3}-164 x_{n+2}\right)^{2}-288\right] \\
& \nLeftarrow \frac{1}{(68)^{2}}\left[\left(31552 y_{4 n+4}-27 x_{4 n+6}\right)+4\left(464 y_{n+1}-4 x_{n+3}\right)^{2}-9248\right] \\
& \& \frac{1}{(12)^{2}}\left[\left(5568 y_{4 n+5}-336 x_{4 n+6}\right)+4\left(464 y_{n+2}-28 x_{n+3}\right)^{2}-288\right] \\
& \neq \frac{1}{(4)^{2}}\left[\left(1856 y_{4 n+6}-656 x_{4 n+6}\right)+4\left(464 y_{n+3}-164 x_{n+3}\right)^{2}-32\right] \\
& \& \frac{1}{(4)^{2}}\left[\left(112 y_{4 n+4}-16 y_{4 n+5}\right)+4\left(28 y_{n+1}-4 y_{n+2}\right)^{2}-32\right] \\
& \& \frac{1}{(24)^{2}}\left[\left(3936 y_{4 n+4}-96 y_{4 n+6}\right)+4\left(164 y_{n+1}-4 y_{n+3}\right)^{2}-1152\right] \\
& \& \frac{1}{(4)^{2}}\left[\left(656 y_{4 n+5}-112 y_{4 n+6}\right)+4\left(164 y_{n+2}-28 y_{n+3}\right)^{2}-32\right]
\end{aligned}
$$

> Each of the following expressions represents a Nasty number:

$$
\begin{aligned}
& \text { * } \frac{1}{4}\left[\left(96 y_{2 n+2}-24 x_{2 n+2}\right)+48\right] \\
& \text { * } \frac{1}{12}\left[\left(96 y_{2 n+3}-168 x_{2 n+2}\right)+144\right] \\
& \text { * } \frac{1}{68}\left[\left(96 y_{2 n+4}-984 x_{2 n+2}\right)+816\right] \\
& \text { * } \frac{1}{4}\left[\left(60 x_{2 n+4}-348 x_{2 n+3}\right)+48\right] \\
& \text { * } \frac{1}{12}\left[\left(480 y_{2 n+2}-24 x_{2 n+3}\right)+144\right] \\
& \text { * } \frac{1}{4}\left[\left(480 y_{2 n+3}-168 x_{2 n+3}\right)+48\right] \\
& \text { * } \frac{1}{12}\left[\left(480 y_{2 n+4}-984 x_{2 n+3}\right)+144\right] \\
& \text { * } \frac{1}{68}\left[\left(2784 y_{2 n+2}-24 x_{2 n+4}\right)+816\right]
\end{aligned}
$$

$$
\begin{array}{ll}
\& & \frac{1}{4}\left[\left(2784 y_{2 n+4}-984 x_{2 n+4}\right)+48\right] \\
\& & \frac{1}{4}\left[\left(168 y_{2 n+2}-24 y_{2 n+3}\right)+48\right] \\
& \frac{1}{4}\left[\left(984 y_{2 n+3}-168 y_{2 n+4}\right)+48\right]
\end{array}
$$

3. Remarkable Observations:

3.1. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola which are presented in Table 2: below

Table 2: Hyperbolas

S.No	Hyperbolas	$\left(\boldsymbol{X}_{n}, \boldsymbol{Y}_{n}\right)$
1	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(2 x_{n+2}-10 x_{n+1}, 28 x_{n+1}-4 x_{n+2}\right)$
2	$8 X_{n}^{2}-Y_{n}^{2}=18432$	$\left(2 x_{n+3}-58 x_{n+1}, 164 x_{n+1}-4 x_{n+3}\right)$
3	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(16 y_{n+1}-4 x_{n+1}, 16 x_{n+1}-32 y_{n+1}\right)$
4	$8 X_{n}^{2}-Y_{n}^{2}=4608$	$\left(16 y_{n+2}-28 x_{n+1}, 80 x_{n+1}-32 y_{n+2}\right)$
5	$8 X_{n}^{2}-Y_{n}^{2}=147968$	$\left(16 y_{n+3}-164 x_{n+1}, 464 x_{n+1}-32 y_{n+3}\right)$
6	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(10 x_{n+3}-58 x_{n+2}, 164 x_{n+2}-28 x_{n+3}\right)$
7	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(80 y_{n+2}-28 x_{n+2}, 80 x_{n+2}-224 y_{n+2}\right)$
8	$8 X_{n}^{2}-Y_{n}^{2}=4608$	$\left(80 y_{n+3}-164 x_{n+2}, 464 x_{n+2}-224 y_{n+3}\right)$
9	$8 X_{n}^{2}-Y_{n}^{2}=147968$	$\left(464 y_{n+1}-4 x_{n+3}, 16 x_{n+3}-1312 y_{n+1}\right)$
10	$8 X_{n}^{2}-Y_{n}^{2}=4608$	$\left(464 y_{n+2}-28 x_{n+3}, 80 x_{n+3}-1312 y_{n+2}\right)$
11	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(464 y_{n+3}-164 x_{n+3}, 464 x_{n+3}-1312 y_{n+3}\right)$
12	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(28 y_{n+1}-4 y_{n+2}, 16 y_{n+2}-80 y_{n+1}\right)$
13	$8 X_{n}^{2}-Y_{n}^{2}=18432$	$\left(164 y_{n+1}-4 y_{n+3}, 16 y_{n+3}-464 y_{n+1}\right)$
14	$8 X_{n}^{2}-Y_{n}^{2}=512$	$\left(164 y_{n+2}-28 y_{n+3}, 16 y_{n+3}-464 y_{n+1}\right)$

3.2. Employing linear combination among the solutions for other choices of parabola which are presented in Table 3: below

GPH - Journal of Mathematics

Table 3: Parabolas

SL.NO	Parabolas	$\quad\left(\boldsymbol{X}_{n}, \boldsymbol{Y}_{n}\right)$
	$32 X_{n}-Y_{n}^{2}=512$	$\left(8+2 x_{2 n+3}-10 x_{2 n+2}, 28 x_{n+1}-4 x_{n+2}\right)$
2	$192 X_{n}-Y_{n}^{2}=18432$	$\left(48+2 x_{2 n+4}-58 x_{2 n+2}, 164 x_{n+1}-4 x_{n+3}\right)$
3	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-4 x_{2 n+2}+16 y_{2 n+2}, 16 x_{n+1}-32 y_{n+1}\right)$
4	$96 X_{n}-Y_{n}^{2}=4608$	$\left(24-28 x_{2 n+2}+16 y_{2 n+3}, 80 x_{n+1}-32 y_{n+2}\right)$
5	$544 X_{n}-Y_{n}^{2}=147968$	$\left(136-164 x_{2 n+2}+16 y_{2 n+4}, 464 x_{n+1}-32 y_{n+3}\right)$
6	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-58 x_{2 n+3}+10 x_{2 n+4}, 164 x_{n+2}-28 x_{n+3}\right)$
7	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-28 x_{2 n+3}+80 y_{2 n+3}, 80 x_{n+2}-224 y_{n+2}\right)$
8	$96 X_{n}-Y_{n}^{2}=4608$	$\left(24-164 x_{2 n+3}+80 y_{2 n+4}, 464 x_{n+2}-224 y_{n+3}\right)$
9	$544 X_{n}-Y_{n}^{2}=147968$	$\left(136-4 x_{2 n+4}+464 y_{2 n+2}, 16 x_{n+3}-1312 y_{n+1}\right)$
10	$96 X_{n}-Y_{n}^{2}=4608$	$\left(24-28 x_{2 n+4}+464 y_{2 n+3}, 80 x_{n+3}-1312 y_{n+2}\right)$
11	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-164 x_{2 n+4}+464 y_{2 n+4}, 464 x_{n+3}-1312 y_{n+3}\right)$
12	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-42 n+3+28 y_{2 n+2}, 16 y_{n+2}-80 y_{n+1}\right)$
13	$192 X_{n}-Y_{n}^{2}=18432$	$\left(48-4 y_{2 n+4}+164 y_{2 n+2}, 16 y_{n+3}-464 y_{n+1}\right)$
14	$32 X_{n}-Y_{n}^{2}=512$	$\left(8-28 y_{2 n+4}+164 y_{2 n+3}, 16 y_{n+3}-464 y_{n+1}\right)$

3.3. Consider $p=x+y, q=y$. Observe that $p>q>0$. Treat p, q as the generators of the Pythagorean triangle $T(\alpha, \beta, \gamma)$, where

$$
\alpha=2 p q, \beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}
$$

Then the following interesting relations are observed:
a) $\quad \alpha-4 \beta+3 \gamma=4$
b) $5 \alpha-\gamma=16 \frac{A}{P}+4$
c) $\frac{2 A}{P}=x y$
d) $3 \alpha-2 \beta+\gamma-\frac{8 A}{P}=4$

4. Conclusion

In this paper, we have presented infinitely many integer solutions for all hyperbola represented by the negative pell equations $x^{2}=8 y^{2}-4$. As the binary quadratic Diophantine equation are rich in variety, one may choices of negative pell equations and determine their integer solutions along with suitable properties.

References

[1] R.A. Mollin, Anitha srinivasan, A note on the Algebra,(2010) ,4(19),919-922.
[2] E.E. Whitford, "Some Solutions of the Pellian Equations $x^{2}-A y^{2}= \pm 4$," JSTOR:Annals of Mathematics, Second Series 1913-1914; vol5, No.1/4, 157-160.
[3] S. Ahmet Tekcan, Betw Gezer and Osman Biim, "On the Integer Solutions of the Pell Equation $x^{2}-d y^{2}=2^{\mathrm{t}}$ ", World Academy of Science, Engineering and Technology, 1; (2007); 522-526.
[4] Ahmet Tekcan, "The Pell Equation $x^{2}-\left(k^{2}-k\right) y^{2}=2^{t}$ ", World Academy of Science, Engineering and Technology, 19; (2008); 697-701.
[5] Merve Guney of the Pell equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=2^{t}$ when $N \in(\pm 1, \pm 4)$ Mathematica Aterna, 2(7); (2012); 629-638.
[6] M.A. Gopalan, S. Vidhyalakshmi., T.R. Usha Rani, and S. Mallika, "Observations on $y^{2}=12 x^{2}-3$ " Bessel Journal of Math, 2(3); (2012); 153-158.
[7] M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, "A study on the Hyperbola on $y^{2}=8 x^{2}-31$ ", International Journal of Latest Research in Science and Technology, 2(1), Feb(2013); 454-456.
[8] V. Sangeetha, M.A. Gopalan, Manju Somanath, "On the Integral Solutions of the pell equation $x^{2}=13 y^{2}-3^{t}$ ", International Journal of Applied Mathematical Research, (2014); 3(1), 58-61.
[9] M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, "Observations on the Hyperbola on $x^{2}=19 y^{2}-3^{\mathrm{t}}$ ", Scholars Journal of the Engineering and Technology, 2(2A), (2014); 152155.
[10] M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha, "On the Integral Solution of the Binary, Quadratic Equation", Scholars Journal of the Engineering and Technology, 2(2A), (2014); 156-158.
[11] S. Vidhyalakshmi, V. Krithika, K. Agalya, "On the negative Pell Equation $y^{2}=80 x^{2}-31$ ", Proceedings of the National Conference on MATAM, Dindukal, (2015), 4-9.
[12] K. Meena, M.A. Gopalan, R. Karthika, "On the Negative Pell Equation y" $=10 x^{2}-6$ ", International Journal of Multidisciplinary Research and Development, 2(12); Dec (2015); 390-392.
[13] K. Meena, M.A. Gopalan, A. Rukmani, "On the Negative Pell Equation y" $=31 x^{2}-6$ ", Universe of Emerging Technologies and Science, Vol II, Dec (2015); Issue XII; 1-4.
[14] K. Meena, M.A. Gopalan, E. Bhuvaneswari, "On the Negative Pell Equation $y^{2}=60 x^{2}-15$ ", Scholars Bulletin, 1(11); Dec (2015); 310-316.
[15] M.A. Gopalan, S. Vidhyalakshmi, R. Presenna, M. Vanitha, "Observation on the Negative Pell Equation $y^{2}=180 x^{2}-11$ ", Universe Journal of Mathematics, Vol 2, Dec (2015); Issue 1; 14-. 45.
[16] M.A. Gopalan, S. Vidhyalakshmi, V. Pandichelvi, P. Sivakamasundari, Priyadharshini, "On the Negative Pell Equation $y^{2}=45 x^{2}-11$ ", International Journal of pure Mathematical Science, Vol-16; (2016); 30-36.
[17] S. Vidhyalakshmi, M.A. Gopalan, E. Premalatha, S. Sofia christinal, "On the Negative Pell Equation $y^{2}=72 x^{2}-8$ ", International Journal of Emerging Technologies in Engineering Research(IJETER), 4(2); Feb (2016), 25-28.
[18] K. Meena, S. Vidhyalakshmi, G. Dhanalakshmi, "On the Negative Pell Equation $y^{2}=5 x^{2}-4$ ", Asian Journal of Applied Science and Technology (AJAST), 1(7); Aug (2017), 98-103.

